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Abstract—We present an empirical study on the use of con-
tinual learning (CL) methods in a reinforcement learning (RL)
scenario, which, to the best of our knowledge, has not been
described before. CL is a very active recent research topic
concerned with machine learning under non-stationary data
distributions. Although this naturally applies to RL, the use
of dedicated CL methods is still uncommon. This may be due
to the fact that CL methods often assume a decomposition of
CL problems into disjoint sub-tasks of stationary distribution,
that the onset of these sub-tasks is known, and that sub-tasks
are non-contradictory. In this study, we perform an empirical
comparison of selected CL methods in a RL problem where a
physically simulated robot must follow a racetrack by vision.
In order to make CL methods applicable, we restrict the RL
setting and introduce non-conflicting subtasks of known onset,
which are however not disjoint and whose distribution, from the
learner’s point of view, is still non-stationary. Our results show
that dedicated CL methods can significantly improve learning
when compared to the baseline technique of "experience replay".

Index Terms—continual reinforcement learning, Q-learning,
replay methods

I. INTRODUCTION

This article is in the context of continual reinforcement
learning (CRL) [1], [2], which describes the application of
dedicated continual learning (CL) [3], [4] algorithms to rein-
forcement learning (RL) [5]. Both are concerned with learning
from non-stationary data distributions. While assumptions in
CL are quite varied, RL assumes a well-defined scenario.
RL is founded on Markov decision processes (MDPs), which
are generally formalized as 5-tuple M = 〈S,A, P,R, ρ0〉.
S and A are the sets of all valid states/actions, P is the
probability function of the transition S × A → P(S), with
P (~st+1 = ~s ′|~st = ~s,~at = ~a) being the probability of
transitioning into state ~s ′ if action ~a is taken in state ~s. R
is called reward function, which maps S × A × S → R and
provides the return signal rt = R(~st,~at, ~st+1). Finally, ρ0 is
the distribution of the initial state. Here, an agent interacts with
an environment, trying to maximize a reward rt ∈ R signal
by selecting the most appropriate action ~at ∈ A based on an
observation ~ot, e.g., a camera signal, of the actual state ~st ∈ S
following a policy π. This feedback loop inherently defines
an incremental manner of learning and implies appropriate
models.

Fig. 1. Schematic representation of a RL control loop, which enables
decision-making.

In this article we focus on Q-learning [6], an important
flavor of RL, where the agent selects actions that maximize
the expected future return Q(st, at), whose dependency on
state and action must be acquired through learning.

Q′(st, at)← (1− α) ·Q(st, at)+

+ α · (rt + γ ·max
a

Q(st+1, a))
(1)

Q-Learning represents an "off-policy" approach, where ex-
ploration is commonly ensured by a ε-greedy strategy and
policy updates are immediately performed after an iteration.
The exploration ensures the discovery of diverse state-action
combinations. This is crucial for models like Q-tables, since
they implement a defined assignment (lookup) between states
and actions.

A. Catastrophic forgetting in RL

Conventional assumptions in machine learning are that data
distributions are stationary and samples are iid. In RL, these
assumptions can be systematically violated in several ways:

Concept drift/shift Even if the environment is stationary, the
observations will not be, at least not on the short timescale
due to the ongoing exploration of the state-action space. For
example, when taking an action ~a ′ as a consequence of
observation ~o ′, the obtained rewards may be in disagreement
at first, since the environment is supposed to be stationary but



Fig. 2. Illustration of environment shifts considered in this article. A simulated robot is trained to follow the black line in a succession of environments: A)
straight line B) straight line + left curve C) straight line + left/right curve. Please note that all of these scenarios include concept drift as well from the point
of view of the learner, due to the exploration of the state-action space.

not deterministic. Similarly, the sampling of the state-action
space is changing over time due to the decreasing influence
of exploration, effectively creating another source of concept
drift.
Environment shift In contrast to this, the environment itself
may be non-stationary and subject to environment drift/shift
(see, e.g., [7]), and thus automatically lead to non-stationary
observations. This includes the case where the agent encoun-
ters novel situations within the environment or is transferred
to a completely different one. Examples of environment shift
are given in Fig. 2.

Deep neural networks (DNNs) are typical machine learning
models employed in deep reinforcement learning (DRL). This
raises the issue of catastrophic forgetting (CF) which espe-
cially DNNs are subject to (see, e.g., [8]) as a consequence
of non-stationary data distributions. Common workarounds
include the use of experience replay (ER), see [9]. In this
approach, newly arriving samples are stored, e.g., by reservoir
sampling, in a large buffer M with fixed size M = |M|.
Instead of training the model directly, random mini-batches are
drawn from the buffer B ∼ M, which simulates a stationary
data distribution. This mitigates CF, but incurs a huge cost in
memory. In addition, reaction to concept drift/shift is delayed
because new data samples will take a while before they are
significantly represented in the buffer. Simultaneously, if the
sample selection is insufficient, the subset may not match
the real distribution or underrepresented samples could be
unbalanced even with buffer.

B. Related work: CL approaches
The research field of continual learning (CL) investigates the

problem of learning under non-stationary data distributions,
see [3], [4] for reviews. Systematic comparisons between
different approaches to avoid CF are performed in, e.g., [8],
[10]. As discussed in [8], [11]–[13], many recently proposed
methods demand specific experimental setups, which deviate
significantly from applications. In contrast to learning from
stationary data, CL scenarios are very diverse [1], [2], [12],
[13], depending on what type of non-stationarity is assumed
[14]. Theoretical analyses of CL are presented in [15]–[17],
again underscoring the fact that a universally accepted defini-
tion of CL has not yet been reached.

A very common assumption in CL is the decomposition of
a problem into several sub-tasks of stationary statistics [1],

[18], which are locally iid. Likewise, the onset of each sub-
task is assumed to be known [12], [19] which side-steps the
issue of detecting the boundaries. Furthermore, sub-tasks are
often assumed to be disjoint [11]: different sub-tasks contain
different classes of the classification problem. This implies that
no re- or un-learning takes place, where samples from known
classes would be assigned a different label in later sub-tasks
[14].

Among the proposed CL methods, three major directions
may be distinguished according to [3]:

Parameter Isolation Parameter isolation methods aim at
determining (or creating) a group of parameters that are mainly
"responsible" for a certain sub-task. CF is then avoided by
protecting these parameters or adding new ones when training
on successive sub-tasks, see [20]–[22].

Regularization Regularization methods mostly propose mod-
ifying the loss function by including additional terms of
criterions that protect knowledge acquired in previous sub-
tasks, see [19], [23], [24].

Replay Replay methods keep small subsets of real samples or
train generators to reconstruct an arbitrary number of pseudo-
samples afterwards. CF can be circumvented by putting con-
straints on current sub-task training or by adding retained
samples to the current sub-task, see [18], [25]–[29].

C. Related work: Continual RL

As stated previously, CL is a broad topic and methods
can be tailored to specific scenarios. Transferring them to a
more general domain such as RL is therefore a non-trivial
objective. First attempts to use CL methods in the domain
of RL are performed in [1] and [2]. The work of [1] gives
detailed insights into important aspects and describes RL as
a natural fit to CL. In particular, the work of [2] elaborates
extensively upon the application of CL in RL and describes
essential criteria on an abstract level. Both works introduce
generic frameworks for CRL and discuss concepts, without
implementing them.

In general, several frameworks for benchmarking RL have
been presented, e.g., [30]. However, only a few of them
are formulated with CRL in mind [31]–[33]. Due to the
divergent formalism, established metrics as accuracy or for-
getting/transfer measures [18], [25] are inapplicable. In RL,



samples are not classified but assigned to Q-values. However,
new metrics for CRL are proposed in [1], [2] and [32], [33].

The works of [34], [35] combine CL and RL and suggest
own approaches tailored to RL. For example, [34] employ
regularization-based models with multi-head outputs and [35]
try to mitigate CF within single tasks by context detection.
However, established state-of-the-art CL methods have barely
been reused and studied under generic conditions as provided
by the RL domain.

D. Mapping CL to RL

RL is founded on an incremental formalism of a deci-
sion problem and offers an "real-world" application for CL.
However, when endeavoring to apply CL approaches in RL,
there are restrictions that may be problematic due to deviating
conditions:

Decomposition into sub-tasks One of the most wide-spread
assumptions in CL concerns the decomposition of the learn-
ing problem into a sequence of sub-tasks, with stationary
data statistics and that they are locally iid. In a stationary
environment, the only entity that can be identified with a
CL sub-task is an episode, that is, a sequence between two
terminal states. It is unclear, though, whether statistics within
an episode should be considered stationary. Epochs themselves
may contain context changes and would therefore violate the
common definition of CL sub-tasks.

Overlapping and contradictory sub-tasks Almost univer-
sally, sub-tasks in CL are supposed to be disjoint. As a
consequence, many approaches try to identify parameters that
are important for certain sub-tasks, or to directly dedicate parts
of the ML model to certain sub-tasks. Typical representatives
are regularization approaches like [19], [23], [24], but also
parameter isolation methods like [20]–[22]. In RL, episodes
do not contain consistent labels or separated classes because
they are treated differently. Each "label" consist of non-one-hot
always changing Q-Values, whereby each sample (state) can
be assigned to one discrete action. This will lead to difficulties
if there exist contradicting, common samples in different sub-
tasks, a frequent situation in RL, especially when sub-tasks
are defined by RL episodes. Even environment shifts would
not alleviate this problem. Therefore, virtually all CL methods
will encounter problems in such cases.

Small number of sub-tasks Most CL models tacitly assume
that the number of sub-tasks is small, as they need to store
significant amounts of data for each sub-task. As an example,
EWC [23] needs to store a Fisher Information Matrix (FIM)
plus all trainable parameters of a DNN for each sub-task,
apart from the fact that the loss function picks up a new term
for each additional sub-task. Parameter isolation methods face
similar problems: either they need to track which parameter is
important for which sub-task, or new structures must be added
to the ML model for each sub-task, both of which are costly
in terms of memory and computational effort. Exceptions are
GEM and A-GEM [18], [25], since they just store a small
percentage of samples per sub-task, and thus the number of

sub-tasks can be large. Pure rehearsal-based methods such as
NSR+ [27] pursue a similar strategy, with similar advantages
and high computational efficiency (storing a few samples is
cheap). Pseudo-rehearsal methods such as, e.g., [28], do not
store samples but train a generator. This can be done for any
number of sub-tasks, but incurs a huge fixed computational
and memory cost, and is therefore slightly less suited.

Sharp and known boundaries In addition, CL sub-task-
boundaries are usually assumed to be sharp, and their onset
known. If common CL approaches are to be applied, transi-
tions between sub-tasks must be detected. However, sub-task
onsets in RL may be smooth to a point where even the concept
of a sub-task becomes questionable.

E. Goals and contribution

In order to apply CL methods to RL, we created an RL
scenario where non-stationarities are mainly characterized by
environment shifts, see Fig. 2. Sub-tasks are overlapping
but non-contradictory (e.g., high rewards in situations that
previously obtained low rewards are non-existing) and their
onsets are assumed to be known. Although we use only a small
number of tasks, we chose CL methods that could scale well
even for a moderate amount of sub-tasks: Gradient Episodic
Memory (GEM) [18] and Averaged Gradient Episodic Mem-
ory (A-GEM) [25] and Naive Sample Rehearsal Plus (NSR+)
[27]. As a baseline for RL performance, a matrix-based model
and the conventional ER approach are investigated.

We present several novel contributions:
• Review of existing CL methods w.r.t. suitability for

reinforcement learning
• Adaptation of CL reference methods to the domain of RL
• Experimental comparison of various CL methods in a

realistic RL scenario

II. METHODS

Simulation environment We use Robot Operating System 2
(ROS2) and Gazebo 111 to physically simulate and control a
line-following robot. ROS2 is a common middleware frame-
work for robotics, which allows decoupled communication
between multiple heterogeneous entities (nodes). We employ it
to communicate with the simulated robot by sending control
signals and receiving sensor data. Gazebo 11 is a physics-
based simulator for ROS2 and includes plugins for various pre-
defined types of sensors as well as actuators. Our simulations
consist of at least one simulated world (environment), each of
which contains a particular racetrack, and the robot model
(interacting agent), which can observe via its sensors and
perform actions via its actuators. Control signals and sensor
readings are transmitted at a defined frequency (5 Hz).

Racetracks All racetracks consist of separate lines on a
plane, which can have an arbitrary course, but never crosses.
Subsections of them can therefore be divided into three
categories: straight, left turn or right turn. Context changes can

1docs.ros.org and gazebosim.org for further information

https://docs.ros.org
https://gazebosim.org


be reasonably interpreted as transitions between these distinct
categories, see Fig. 2.

Fig. 3. The simulated robot, which closely models the popular 3π robot.

Simulated robot The simulated robot is modeled after the
popular 3π robot from Pololu robotics, see Fig. 3. It is
controlled by a differential drive, with two wheels (radius:
≈ 1.55 cm, separation: ≈ 9 cm) driven by independent motors.
In addition, there is a passive caster wheel for balancing.

TABLE I
KEY DATA OF THE USED ROBOT, WHICH IS A REPLICA OF THE POLOLU 3π.

Height Width Length Weight
≈ 3 cm ≈ 9.5 cm ≈ 9.5 cm ≈ 135 g

Action space The action space consists of 9 discrete actions
a(t): the three basic actions (drive straight, turn left or turn
right) executed at three different speeds. An action is a 2-tuple
containing a value for the speed of each wheel (left and right).
The individual wheel speeds for all actions are given in Tab. II.

TABLE II
DISCRETE ACTION SPACE, WHEEL SPEEDS ARE GIVEN IN METER PER

SECOND ( m
s

).

Index 1 2 3 4 5 6 7 8 9
Left speed 0.00 0.05 0.10 0.00 0.00 0.05 0.05 0.10 0.10

Right speed 0.00 0.05 0.10 0.05 0.10 0.10 0.00 0.00 0.05
Type Straight Left Right

Reward The reward signal is calculated based on the deviation
d (in pixels) of the left edge of the line to the center of the
image, which is assumed to have width W :

r(t) = 0.5−

∣∣∣∣∣d− W
2

W
2

∣∣∣∣∣ , with d ∈ [0,W ] (2)

The deviation is computed by image processing, assuming that
the line is significant darker than the remaining ground plane.
This measure provides a "dense" reward, which is computable
immediately for each iteration in our feedback loop. The
default range of the signal is within [−0.5,+0.5], but terminal
states and neutral actions (no movement) are penalized by a
value of −1.0. A terminal state always occurs when image
processing is unable to detect the left edge of the line in
the image. The reward function does not reward or penalize
different speeds, except for the neutral action (no movement).

State Space The agent observes its environment by a down-
ward directed camera (5× 100× 3 pixels). Matrix controllers
are preprocessing such data to produce a scalar state s(t),
which is realized by the deviation d. All other controllers stack
the last n = 5 received images to obtain a state representation
~s(t) of dimension 5n× 100× 1.

Episode definition The investigated scenario describes a con-
trol problem with a theoretically infinite length of episode.
A single episode can therefore be of arbitrarily length and
trajectories consist of varying numbers of samples. An episode
ends only if a terminal (invalid) state is reached, and the agent
must be reset in order to start over again.

Sub-task definition Each new sub-task consists of segments
in which novel skills must be acquired, but also consist of
sections from previous sub-tasks, which require the adoption
of already learned ones. In this work, for the time being, only
a deliberate change of the racetrack (referred as environment
shift) will be considered as a sub-task. This relaxation permits
the application of existing state-of-the-art methods.

A. CL approaches

We investigate three different CL approaches. All of them
are replay-based methods and should replace the original ER.

GEM and A-GEM Gradient Episodic Memory (GEM) [18]
and Averaged Gradient Episodic Memory (A-GEM) [25] are
both constraint-based replay approaches. They project the cur-
rent loss gradient onto loss gradients computed from samples
in the buffer, if deviations are judged to be excessive. GEM
and A-GEM share a common principle, but differ in the way of
computing loss gradients from buffered samples. The primary
parameter of (A-)GEM is the size M of buffer M. GEM and
A-GEM do not define a specific sample selection strategy and
propose to store randomly m = M

t samples of the current
sub-task. However, the selection requires information about
sub-task boundaries in order to assign distinct partitions per
sub-task.

NSR+ Naive Sample Rehearsal Plus (NSR+) [27] is another
replay approach, which can be executed with the information
about task boundaries, but unlike the (A-)GEM the sample-
selection does not depend on it. NSR+ has two parameters: the
size M of bufferM as well as the ratio r of replayed samples.
The selection strategy keeps the M worst-performing samples
in a buffer, for this the buffer is evaluated as a separate mini-
batch and compared with the losses of the current mini-batch.

B. Models

Q-learning is performed using matrix-type and DQN-type
models. The matrix-type model is trained either by the original
update rule [6] or by the update rule of speedy Q-learning
[36]. DQN-type models are trained either by the standard DQN
update rule [37] or by double Q-learning [38].

Q-tables First of all, matrix-type models (Q-tables) are used
to obtain reinforcement learning in the original manner and to
compare with the other models. A Q-table consists of (|S| ×
|A|) entries and is able to map discrete states onto discrete



actions. Each entry (state-action tuple) represents the expected
return as Q-value Q(s(t), a(t)) if this action would be chosen
in the given state. Therefore, high values are to be preferred,
and the maximum value is to be determined via the respective
state. Like all Q-learning models, Q-tables are updated after
each single time step. However, only the value of the last
state-action tuple will be updated, thus all other values remain
unaffected.

DQN Instead of matrices, DNNs can be used as back-end to
obtain deep reinforcement learning (DRL) by deep Q-networks
(DQNs). This has multiple advantages: the state space can
be continuous, the state can be in context, the state can be
consisted of multi-modal data and the model can generalize
between samples. The type of network is freely selectable
and independent of the chosen algorithms. Some networks are
more or less suitable for different scenarios, for simplicity we
use conventional convolutional neural networks (CNNs). Like
Q-tables, DQNs perform an update after every time step but
contrary this involves modifications to all trainable parameters
(θ). Each update is w.r.t. the current sample or mini-batch, and
can therefore amplify the effect of catastrophic forgetting (CF)
if gradients are opposite.

C. RL Sub-tasks

TABLE III
SUB-TASK DEFINITIONS FOR CONTINUAL RL AS EMPLOYED IN THIS

ARTICLE. EACH SUB-TASK CONSISTS OF A TOTAL OF 50,000 TIME STEPS
AND ADDS NEW CAPABILITIES.

ID 1 2 3
Type straight zero slalom

Start it. 0 50, 000 100, 000

CL problems are typically divided into individual sub-tasks,
following the terminology from [8]. Frequently, class labels are
used as a basis to group samples into disjoint sub-tasks, since
most work on CL is in the context of supervised learning.
Since class labels do not exist in RL, this definition of sub-
tasks cannot be used for RL. Instead, we focus on environ-
ment shifts for defining RL sub-tasks, which we create by
manipulating the track definitions (Fig. 2) at defined intervals,
see Tab. III. In contrast to the main body of CL, sub-tasks as
understood here are not disjoint. More precisely, each new sub-
task requires additional skills to obtain high rewards, but also
re-uses skills acquired in previous sub-tasks. For example, an
agent solving the second sub-task can re-use the skill to drive
on a straight line (acquired in the first sub-task), but needs to
acquire the skill to execute curves to the left in addition to
that.
By implementing sub-tasks as synthetic environmental shifts,
see Fig. 2, we control when they occur and make this infor-
mation available to the RL process. Concretely, we reset the
parameter ε which controls exploration behavior to a value of
1
t for each sub-task, after which the normal decaying-ε-greedy
is performed as usual. Moreover, the utilized Cl methods can
use this information to, e.g., generate new partitions. In a fully

realistic RL application, the agent would have to discover such
sub-task boundaries by itself.

D. Benchmarking

While in supervised learning the terms benchmarks and
datasets are synonymous, in reinforcement learning a dis-
tinction must be made. Henceforth, the term "benchmark"
describes a possibility to evaluate the current policy (π) of
an agent against certain metrics to capture its performance,
but without predetermined samples to serve as a "dataset". The
fundamental issue here is that the reward is not only a function
of the current observation, but also of a previous action. In
the same way, the current observation depends on previous
actions. In order to perform an offline evaluation of a learned
policy, this policy would be required to take a predetermined
sequence of actions, which in turn would prevent a thorough
evaluation of the policy whose goal, after all, is to select
appropriate actions.

Any evaluation therefore has to be performed within an
environment using a fixed policy (i.e., by setting the learning
rate to 0 and suppressing exploration), in contrast to the offline
evaluation of classifiers that is common in CL. We choose to
perform benchmarking directly after training on a sub-task is
completed.

E. Metrics

We are using the history of measured rewards to evaluate
learned policies. An elementary quantity of our evaluation
is the sum over all rewards Σe received during a single
RL episode e. We chose summation over averaging since
rewards are bounded, and the sum thus reflects not only the
total obtained reward, but also the length of the episode. By
default, we plot the ~Σt = Σe, ∀e ∈ t over the whole sub-
task t to obtain a visualization with intuitive meaning. We can
condense the information contained in ~Σt further by plotting
an exponentially smoothed version, or even averaging them to
obtain a scalar quality measure Σt (which is strictly of a "the
higher the better" nature).
As already described in Sec. II-D, each action during evalua-
tion is chosen w.r.t. the current static policy, without choosing
some of them randomly, e.g., by a ε-greedy strategy.

III. EXPERIMENTS

Different agents have to perform our benchmark in real-
time. Updates are executed in a strictly online fashion during
the entire simulation. After each sub-task, the respective policy
of the agent is stored to compare experiments successively.
Finally, these agents should at least beat the baselines.

A. Baselines

In RL, baselines are closely linked to the respective bench-
mark and are non-transferable. Furthermore, the variance
between isolated runs can vary significantly, especially if the
number of iterations is limited. For comparison, all methods
should be applied under identical conditions. We chose state-
of-the-art methods like Q-tables and DQNs with ER as possi-
ble lower bounds. Both are commonly used in the domain of



(D)RL, whereas we apply them here in the context of continual
RL (CRL). Both baselines (Tab. IV) achieve predominantly

TABLE IV
PERFORMANCE OF THE BEST HYPER-PARAMETER SETUP FOR ALL

BASELINES, REPRESENTED BY Σt FOR EACH SUB-TASK.

Sub-task 1 Sub-task 2 Sub-task 3 Overall
Baseline Type Σ1 Σ2 Σ3

Q-tables history −911.833 −5973.567 −383.633 −7269.033
last policy −164.333 −622.000 17.600 −768.733

DQNs + ER history −1744.880 −2777.807 −996.160 −5518.847
last policy −57.053 −256.953 −55.227 −369.233

negative scores, while the second sub-task is performing the
worst. Negative scores indicate, that an agent is not able to
keep the left edge of the line centered. This does not have to
result in a loss of the line from its field of view, but rather
in an inconvenient driving style. The benchmark itself seems
already challenging, as the negative first sub-task indicates,
regardless of environmental shifts being performed. To rule out
the possibility of having too few iterations to acquire needed
skills, we additionally run these experiments 10 times longer
for 500, 000 iterations per sub-task.
The runs differ because they are influenced by numerous
random factors, e.g., content-related aspects as exploration
or initial decisions and also technical aspects as transmission
time or calculation time. However, the presented values are
averaged over multiple runs (min 3) to be as representative as
possible.

B. Results
The results of the investigated CL methods are shown

in Tab. V. Compared with the baselines of Tab. IV, each
individual method results in a significant higher score. But
here, too, the second sub-task performs the worst. Our results

TABLE V
PERFORMANCE OF THE BEST HYPER-PARAMETER SETUP FOR ALL CL

METHOD, REPRESENTED BY Σt FOR EACH SUB-TASK.

Sub-task 1 Sub-task 2 Sub-task 3 Overall
Baseline Type Σ1 Σ2 Σ3

GEM history 3143.780 −1899.703 2303.273 3547.350
last policy 450.300 −109.193 273.873 614.980

A-GEM history 5568.810 −4470.237 2663.120 3761.693
last policy 431.017 −386.953 316.243 360.307

NSR+ history 4513.033 −4049.577 2746.470 3209.927
last policy 664.837 −352.727 304.730 616.840

demonstrate that RL methods as Q-learning converges faster in
combination with CL methods, since the first sub-task already
has a high positive value. New skills after sub-task changes
(realized by environment shifts) are also adapted faster than
with conventional ER approaches. While ER trains over mini-
batches, Q-Tables and the CL methods use single samples per
update.

Fig. 4. All Σes of an outstanding A-GEM run. Data points are scaled by
episode length and colored by the average. Sub-task boundaries are marked
as vertical lines.

If an experiment has too few iterations (time steps), the
results depends strongly on the learning process initiation,

which leads to divergent or almost inconsistent results. In
addition to already mentioned factors, early good decisions in
particular favor this, since wrong decisions merely rule them
out but do not offer a selectable option. The run visualized in
Fig. 4 is nevertheless a representative trajectory of A-GEM
experiments, as they are generally able to adapt new sub-
tasks quickly. Only the second sub-task performed in this case
significantly better than average.

IV. DISCUSSION

The experiments presented in Sec. III-B allow to draw the
following conclusions:

CL methods can be transferred to the RL domain Although
we consider a simplified RL scenario here, where concept
drift occurs only at sub-task boundaries, we nevertheless
showed that the assumptions made by several dedicated CL
methods can be made compatible with RL. A significant
percentage of CL methods were, however, excluded from our
considerations due to memory or scalability issues, see Sec. V
for a justification.

CL methods can improve RL performance W.r.t. to the
baseline of experience replay, we observe that CL methods
achieve faster convergence on single sub-tasks. This shows that
more knowledge is retained by CL methods. Experience replay
converges, but struggles with environment shifts, since it takes
some time until the replay buffer is sufficiently populated with
new sub-task samples.

Sample selection is essentially Both investigated CL methods
perform replay, i.e., they re-use stored samples from past
sub-tasks. Our investigation indicates that sample selection is
an essential ingredient, especially in RL. To illustrate this,
we recall that sub-tasks in RL (whatever their definition)
are never disjoint. Even very rudimentary sample selection
strategies, like selecting the worst-performing samples as we
did for NSR+, increases the chances of storing only samples
characteristic to a certain sub-task.

V. CONCLUSION AND OUTLOOK

In this article, we consider a RL problem with known, hard
sub-task boundaries. Sub-tasks are not disjoint but overlap-
ping, and no contradictions occur between sub-tasks, meaning
that for the same sensory state, the Q-values do no change
between sub-tasks. In this somewhat restricted RL setting,
we could show that two common CL methods, (A-)GEM and
NSR+ can outperform the common RL baseline of experience
replay. In this setting, we expect other CL methods to be
applicable as well, e.g., generative replay and GMR. However,
several open issues remain and will need to be addressed in
future work on CRL.

Known sub-task boundaries First of all, virtually all existing
CL methods depend on the knowledge of sub-task boundaries,
but are themselves incapable of detecting them. Thus, CL
algorithms with outlier detection capacity should be beneficial
in this context, or else an additional mechanism performing



the detection of sub-tasks. However, the case of hard sub-
task boundaries, as we introduced it here by the concept of
environment shifts, is not a common one in RL. Rather, data
statistics change gradually, at least from the learner’s point of
view. The absence of hard sub-tasks may exclude many CL
approaches (e.g., constraint-based methods), or else force a
major redesign.

Contradictions Any RL agent is likely to encounter conflict-
ing data statistics, where the same state-action tuples will
get assigned very different rewards as a consequence of,
e.g., concept drift. Most CL approaches implicitly assume
that knowledge from previous sub-tasks should be preserved,
and not modified. This is no longer possible if systematic
contradictions occur. Identifying or designing a CL method
that can work with conflicting data statistics will be a challenge
to solve.

Scalability The scaling behavior of many CL approaches
w.r.t. time and memory is unfavorable. Some approaches
require the storage of a complete model for each new sub-
task, whereas replay methods must generate an ever-increasing
amount of previous data for each new sub-task. Since RL is
often conducted over long time scales, with a succession of
many sub-tasks, employing a scalable CL approach will be
vital.

SUPPLEMENTARY MATERIAL

A. DQN back-end

Table VI presents detail about the back-end, we employed
for all experiments. The model is an intentionally small CNN
and consists of two convolutional layers as well as two fully
connected layers and the output layer. For activation, ReLU is
applied and after each convolution a maxpooling is performed.
Compared to the state-action space of our Q-tables (33× 9 =
297), this model (48, 613) seems already overparameterized.

TABLE VI
SUMMARY OF THE CNN BACK-END ARCHITECTURE. THE NUMBER OF

TRAINABLE PARAMETERS IS 48, 613 IN TOTAL.

layer type properties parameters
input identity 5 × 100 × 3
conv 1 convolutional filters: 4 368

kernel size: (3, 5)
strides: (1, 1)

maxp 1 pooling pool size: (1, 2)
relu 1 activation ReLU
conv 2 convolutional filters: 8 1, 936

kernel size: (3, 5)
strides: (1, 1)

maxp 2 pooling pool size: (1, 2)
relu 2 activation ReLU
flatten reshape 352
fc 1 dense 100 35, 300
relu 3 activation ReLU
fc 2 dense 100 10, 100
relu 4 activation ReLU
output dense 9 909
linear activation linear

B. Hyper-parameters

The list of all hyper-parameters we used in our specific RL
setup is given by Table VII. For better clarity, these have been
grouped by subject. The majority is needed to perform Q-
learning or RL in general, only a few of them belong to CL
methods. We chose the sizes of CL buffers to be 1

10 -th of the
ER buffer sizes.

TABLE VII
LIST OF ALL HYPER-PARAMETERS AND THEIR CORRESPONDING VALUES,

WE CONSIDER IN THIS ARTICLE.

subject name values
generic transmission frequency 5 Hz
generic state space complexity 33 tuples (Q-tables)

500 pixels (DQNs)
generic action space complexity 9 tuples
generic sequence size 1 sample (Q-tables)

3 samples (DQNs)
task iterations sub-tasks (train) 50,000
task iterations sub-tasks (eval) 5,000
algorithm type original, speedy (Q-tables)

original, double (DQNs)
algorithm learning rate 0.5, 0.1 (Q-tables)

1e-2, 1e-3 (DQNs)
algorithm discount factor 0.75
algorithm repeat action 1
model update frequency 1
model mini-batch size 1 (non ER)

8, 16 (ER)
model repeat update 1 (non CL)

3 (CL)
model loss function Huber
model optimizer SGD
ε-greedy strategy non-linear decay
ε-greedy start 1

t
ε-greedy stop 0.005
ε-greedy step 0.001
ER buffer sample selection reservoir sampling
ER buffer buffer size 10,000, 30,000
(A-)GEM averaged yes, no
(A-)GEM buffer size 1,000, 3,000
(A-)GEM memory strength 0.5
NSR+ buffer size 1,000, 3,000
NSR+ replay ratio 1.0
NSR+ sample selection worst performing

C. Policy evaluation

Fig. 5. The agent’s deviation from the line, evaluated before training.

Figures 5 to 7 visualize the evaluation of line deviation
within the observed images for 1, 000 iterations. If the agent



Fig. 6. The agent’s deviation from the line, evaluated early after training.

Fig. 7. The agent’s deviation from the line, evaluated later after training.

drives perfectly centered over the left edge of the line, the
deviation will be 0. If the agent deviates to the left, the edge
is moving to the right in the received image accordingly and
vice versa. Finally, the boundary of −1 encodes the edge in the
leftmost position within the image, and +1 thus the rightmost
position.
However, Fig. 5 shows an evaluation of an untrained agent,
which always drives to the left and loses the track immediately.
The evaluation of the same agent after some train steps is given
in Fig. 6. Now, if the agent deviates too much to the left, he
has learned to countersteer to the right, but still loses the track
quickly. Nevertheless, this represents the first acquired skill of
the investigated agent. Finally, Fig. 7 visualizes this agent at
an even later stage. It can be seen that actions are now much
more finely motorized than before, but sometimes the agent
still loses the track.

Fig. 8. Frequency of actions, which the agent takes if its policy is evaluated
on the first racetrack (straight only), after learning the first sub-task.

Fig. 9. Frequency of actions, which the agent takes if its policy is evaluated
on the second racetrack (straight and left curve), after learning the first and
second sub-task.

Frequencies of chosen actions are shown in Figures 8 and 9,
where Fig. 8 evaluates the first sub-task and Fig. 9 the second
one. In both figures, all actions that have the same wheel speed
(driving straight) are colored gray. Actions which have a higher
wheel speed on the right than on the left (perform a left curve)

are shown in orange, and actions which have a higher wheel
speed on the left than on the right (perform a right curve) are
shown in blue.
As expected, w.r.t. the first sub-task the agent takes straight
actions the majority of time, so they are most likely for
this track. If the agent deviates from the line, other steering
impulses are necessary, but this case is less common. However,
the number of diverse actions is still large, as 7/9 are used.
During driving the second sub-task, frequencies are changing,
because the racetrack has additionally sections of left curves.
Correspondingly, orange actions (performing a left curve) are
more frequently chosen, than before. To counteract still a
possible overdrive, the frequency of blue actions (performing
a right curve) is also increasing. At the same time, it can be
noted that the number of diverse actions decreases, by a kind
of self-quantization of the action space.
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