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Abstract. Continual Learning (CL, sometimes also termed incremental
learning) is a flavor of machine learning where the usual assumption of
stationary data distribution is relaxed or omitted. When naively apply-
ing, e.g., DNNs in CL problems, changes in the data distribution can cause
the so-called catastrophic forgetting (CF) effect: an abrupt loss of previous
knowledge. Although many significant contributions to enabling CL have
been made in recent years, most works address supervised (classification)
problems. This article reviews literature that study CL in other settings,
such as learning with reduced supervision, fully unsupervised learning, and
reinforcement learning. Besides proposing a simple schema for classifying
CL approaches w.r.t. their level of autonomy and supervision, we dis-
cuss the specific challenges associated with each setting and the potential
contributions to the field of CL in general.

1 Introduction

Continual learning is a field of machine learning where the data distribution is
not static. It is a natural framework for many practical problems where the
data arrives progressively, and the model learns continuously. For example, in
robotics, robots need to adapt to their environments to interact and realize
actions constantly, or recommendation systems also need to adapt constantly to
the new content available and the new needs of users. However, in recent years,
the field of continual learning has focused mainly on one type of classification
scenario: class-incremental. This scenario evaluates how models can learn a
class once and remember it when new class data arrives. While it is important
to solve this problem, using only one type of scenario can lead to over-specialized
solutions that can not generalize to different settings. In this paper, we propose
to review the literature dealing with other settings than the default one (class-
incremental) and more generally, fully supervised scenarios. The goal is to shed
light on efforts made to diversify the evaluation of continual learning.

We introduce the continual learning framework and the goals of continual
learning (Sec . Then, we describe the default scenario and its characteris-
tics (Sec . In addition, we introduce a scenario that goes beyond the default
scenario in supervised learning (Sec , unsupervised learning (Sec [5)) and rein-
forcement learning (Sec [6).



Disclaimer: This article compares the differences between supervised contin-
ual learning (CL) and other settings. Each of these settings can have appropri-
ate use cases and application fields. Therefore, the goal is not to push for a dif-
ferent kind of CL that is supposedly more “natural” or “realistic”, but to point
out that other feasible settings for CL exist, with partially overlapping chal-
lenges and solutions. Thus, we review existing literature, list commonly made
assumptions, and point out remaining challenges specific to non-supervised
continual learning. Moreover, benchmarking diversity is of high value if differ-
ent benchmarks are built with the intent to evaluate one particular criterion
(of which there are several). Benchmarks or scenarios that are not built for
such purposes may contribute less to progress in CL.

2 Framework and Goals of Continual Learning

Continual learning (CL) is a machine learning sub-field that studies learning
under time-varying data distributions. This relaxes one of the fundamental
assumptions of statistical learning theory ([1]), which states that the data follows
a stationary distribution. One advantage of this assumption is its simplicity,
whereas CL scenarios are very diverse, depending on the nature of the non-
stationarity. In CL, it is therefore very important to clearly define the scenario,
the goals of learning, the evaluation measures, and the loss functions. The
following section describes typical non-stationarities of the data distribution that
have been considered in the literature (see also [2] [3]).

2.1 Data distribution Drifts

CL under data distribution shifts needs memorization mechanisms adapted for
the type of non-stationarity, which requires assumptions by the used algorithms
in the face of an infinite number of possible ways a distribution can be non-
stationary. For simplicity, we will list several typical definitions used for super-
vised learning (e.g., classification) but that can be generalized to other settings.

A simple way to categorize non-stationarities is based on class information.
We may distinguish two types of shifts [2] in this case: concept shift, where the
annotation of existing data changes [4] and virtual shift, where we get new data,
but the annotation does not change. Usually, the term shift is employed for
sudden changes in data distributions, whereas the term drift is used for gradual
changes over time. In supervised CL, virtual shifts are the most common non-
stationarities that have been studied. We can distinguish the special cases of
virtual concept shift, implying new data and new labels, and domain shift, where
new data of known labels are observed. Those two settings are also known as
respectively class-incremental and instance-incremental [Bl [6].

The objectives to be optimized may change over time as well [3], as in con-
tinual reinforcement learning [7, [8 [9].
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Fig. 1: The default scenario for CL. The data stream is assumed to be partitioned
into sub-tasks defined by data and labels (targets). Data statistics within a sub-
task are assumed to be stationary. In addition, sub-task data and labels are
assumed to be disjoint, i.e., from different classes. The sub-task onsets are
generally assumed to be known as well.

2.2 Common CL constraints

If CL were not subject to constraints, there would be a simple solution to any
scenario. It involves storing all incoming samples and re-training every time a
decision is expected, [10]. This entails a time and memory complexity that is at
least linear in the number of processed samples. However, most CL proposals
assume that memory is limited in some way, preventing this (obvious) solution.
Many approaches similarly assume that the storage of samples is restricted.
Other resources constraints subject of study are: computational cost, memory,
data privacy, fast adaptation, inference speed, transfer. Other constraints that
are more related to the reliability of approaches are stability and explainability.
A discussion of CL constraints can be found in, e.g., [I1], whereas evaluation
measures that take these constraints into account are given in [5].

3 The default scenario for CL

A particular supervised setting, which we will refer to as the default scenario,
is currently dominating CL literature. It is based on a classification problem
divided into a small number of sub-tasks. Virtual concept shift occurs abruptly
at sub-task boundaries by the apparition of new samples belonging to previously
unseen classes, see Fig Usually, the sub-task onsets/boundaries are known.
A consequence of this disjointness of sub-tasks is that no pure concept shift is
involved: the annotation for a given data point will never change or be subject
to conflict as learning progresses.

In the default scenario, the goal of CL is usually to learn the complete statis-
tics of all sub-tasks as if they had been processed all at once, rather than one
after the other.

Sometimes, samples are processed one by one, or all samples in a given sub-



task are simultaneously available. In some works, the sub-task index is known
at test time, which is used for selecting the correct head of a multi-headed DNN
for inference.

The assumptions made in the default scenario are justified in many use cases.
However, it is obvious that other scenarios, e.g., in robotics, may be found where
they impose too severe restrictions. Moreover, many characteristics of the default
scenario, such as “drift are abrupt” or, “tasks are not revisited” lend themselves
to benchmark overfitting. As an example, consider sub-task T5 in Fig[l} here, a
DNN could punish incorrect decisions for class “1” more strongly than incorrect
decisions for classes from the current sub-task since the default scenario assumes
that sub-tasks are disjoint. Even if researchers do not consciously exploit these
assumptions, the employed CL algorithms may still rely on them indirectly. It is
thus fundamental to perform experiments in scenarios where these assumptions
do not hold.

Thus, creating diverse benchmarks, as well as approaches that do not crit-
ically rely on the assumptions from the default scenario, should be an ongoing
effort. This effort should be pushed notably by existing continual learning li-
braries such as Continuum [12], Avalanche [13] or Sequoia [7].

3.1 CL approaches for the default scenario

This section is not meant to be exhaustive, since the default scenario is not the
focus of this article. Please refer to recent reviews [I4] [I5] for more details on
CL methods for the default scenario.

Broad strategies for performing CL in the default scenario are regularization
[16] [17], replay [I8], 19, 20] and dynamic architectures [21] 22], 23] 24] 25]. Reg-
ularization penalizes changes to model parameters that are deemed important
for past sub-tasks. This is usually achieved by adding penalty terms to the loss
function, and it is implicitly assumed that new sub-tasks add only new data and
classes. Dynamic architecture methods extend models over time in order to sepa-
rate previously learned parameters from currently optimized ones, thus reducing
cross-talk and catastrophic forgetting (but equally assuming that new sub-tasks
contain only new data). Replay methods store received data for subsequent use
in re-training (rehearsal). Instead of relying on stored data, re-training can also
be performed using samples produced by generative models (generative replay).

Replay is known to be an effective method for preventing catastrophic forget-
ting (CF), especially in class-incremental settings [26], [14], but also for continual
reinforcement learning [27], 28] [T9] or unsupervised learning [29] 30, [31].

3.2 Metrics and evaluation procedures

In the default scenario, various measures related to the classification error are
common, which have been discussed in, e.g., [32, B3, B4]. A common baseline is
termed cumulative performance, obtained by evaluating models on the merged
test sets from all sub-tasks, which corresponds to learning with stationary statis-
tics. This baseline is often considered an upper bound for CL performance.



In addition, [I7] proposed the notions of forward and backward transfer:
forward transfer (FT) measures how training on sub-task ¢ impacts performance
on a future sub-task j > i. For backward transfer (BT), the impact on previous
sub-tasks j < i is considered. The common case in CL is negative BT indicating
forgetting, but positive BT is theoretically possible as well.

Many authors, e.g., [16], assume that (although sub-tasks are presented
sequentially) all sub-task data are available for model selection and hyper-
parameter tuning. For example, tuning EWC’s regularization strengths \; for
each sub-task is often done in hindsight.

Some authors [35] 36 [37], especially in works using multi-head DNNs, assume
that the sub-task ID is known during testing, although this does not seem to
be the current consensus. In the limit where each sub-task contains only a
single class, providing the sub-task ID at test time means providing the class
label. Even if sub-tasks are more diverse, the sub-task ID contains significant
information and may thus confer unfair advantages. The question of evaluation
protocols in CL is discussed in [11], [38].

3.3 Benchmarks

Benchmarks for the default CL scenario are mostly derived from datasets such
as MNIST, CIFAR10/100, Imagenet, SVHN etc. to create class-incremental or
domain-incremental scenarios. The permuted MNIST benchmark, where suc-
cessive sub-tasks are created by permuting all pixels according to a sub-task
specific permutation scheme, was initially popular [16] 39} [40] but is less so now
because it can, to good accuracy, be solved even without dedicated CL schemes
[11]. Some authors used Atari games [41], Mujoco [42] or Meta-World [43] as
benchmarks. CL specific variants of standard benchmarks such as, e.g., colored
MNIST [44] are widely used as well since they can be used to investigate specific
aspects of CL, see [45], [46].

4 Generalizations of the default scenario

The default scenario is convenient for evaluation and represents a rather con-
trolled setting for CL. In less controlled settings, fully annotated data may not
be available, or supplementary constraints may be imposed. We find it conve-
nient to introduce a new taxonomy of CL approaches based on their level of
autonomy.

4.1 Classifying the autonomy level of CL algorithms

The various applications of continual learning can be classified in autonomy
levels, as for autonomous vehicles [47]. Obviously, CL should get harder as less
and less human supervision is supplied. We identify two dimensions of autonomy;,
both of which will be discussed in-depth to characterize generalized supervised
CL approaches better.



Objective Autonomy denotes the autonomy regarding the objective to achieve
(labels, targets, rewards), which we group into 4 levels:

e Level 0: Full data annotation: supervised.

e Level 1: Sparse labelization: RL, active learning, sparse training.
e Level 2: No annotation for training, query for fast adaptation.

e Level 3: No annotation for training, zero-shot adaptation.

For objective supervision levels 2 and 3, continual training can be seen as pre-
training for the unknown future objective task. We can note that if the scenario
objective is unsupervised, then we can assume that it is similar to full data
annotation.

Continual Learning Autonomy is concerned with autonomy regarding the
distribution shifts (task label, task boundaries):

e Level 0: Full task annotation at train and test.
e Level 1: Full task annotation at train, no test task labels.

e Level 2: Sparse task annotation at train, no test task labels: example
task boundaries only without train task label.

e Level 3: No task labels at all: task-agnostic.

This classification still holds for smooth transitions (concept drift). We can
note that for class-incremental problems, the task-agnostic setting does not make
sense since the task information is in the class labels. We can now characterize
CL contributions by a pair “(i j)”, where i represents the objective autonomy
level, and j stands for the CL autonomy level. Hence, the pair (0 1) describes a
class-incremental scenario, i.e., a classification setting with fully annotated data
and task labels for training but not for test data. It is important to note that
those ratings classify the complexity of a given scenario and not approaches.
For example, the default scenario (class-incremental) assesses a complexity level
of (0 1), domain incremental without task labels would be (0 2), task agnostic
continual reinforcement learning [48] (1 3). To validate approaches’ autonomy,
they should be evaluated on adequate scenarios.

Investigating the cost of lowering or increasing a task’s complexity level is
fundamental for applications of CL. We want to make our algorithms scale up to
arbitrary complexity levels, but in practice, we would always choose the lowest
possible complexity. If permitted by a given application, solving a scenario with
a complexity level (0 1) is obviously more efficient than solving the same scenario
with a level of (3 3).



4.2 Towards a Generalization of the Default Setting

Some variants of supervised CL exist that alleviate the need for annotated data.
The reduction of annotations can apply for restricted access to the task labels
as in task-agnostic CL [49] [50], or by reducing the labels’ availability as in
continual active learning [51] [52], or in semi-supervised continual learning, [53].
As described in Sec reducing access to task supervision lead to evaluating
a CL autonomy level of 2, and removing all access to it lead to evaluating a CL
autonomy level of 3. On the other hand, reducing data annotation lead to an
objective autonomy of 1 instead of 0 when the full annotation is available.

Among potential supplementary constraints, data can be streamed without
the possibility of multi-epoch training as in online training [54] [55], or the data
can be imbalanced [56, 57], or mixed with spurious features [58]. Scenarios where
the annotations change over time (real concept drift) have been investigated in
[3, 59, [4]. Some contributions [60] relax the condition of disjoint sub-tasks and
assess the impact of several fundamental CL strategies such as regularization
and replay. Yet others [61] [62] demonstrate that detecting sub-task boundaries
autonomously is generally feasible by using density estimation methods.

To the generalized settings cited above, supplementary constraints (as dis-
cussed in Sec may be added, making them even harder. If this brings CL
closer to real-life applications, solutions are required that do not overfit a par-
ticular CL setting. Currently, the field of CL is fundamentally meta: implicitly,
the goal is not to train the best possible model w.r.t. non-continual baselines,
but rather to create algorithms that show maximal generalization to other CL
settings. Therefore, experimenting with generalized supervised scenarios can
assess algorithms’ robustness and improve generalized CL.

5 Unsupervised Continual Learning

Whether a machine learning task is considered supervised or not depends on
the formulation of the loss function. In fact, no assumptions whatsoever are
made concerning the loss in the definition of CL given in Sec (Il Therefore, CL
is naturally transferred to unsupervised methods of machine learning, typical
examples of which are density modeling, clustering, generative learning, and
unsupervised representation learning.

5.1 Density modeling

Density modeling aims at approximating the probability density of a given set
of data samples directly by minimizing a log-likelihood loss. Typically, this is
achieved using mizture models, which model the data density as a weighted sum
of N parameterized component densities, e.g., multivariate Gaussian densities
or Dirichlet distributions. Density modeling allows performing, among other
functions, Bayesian inference and sampling. These functionalities spawned in-
creased interest in mixture modeling a few years back, particularly in robotics
[63, [64, [65, [66]. The main issue for CL in mixture modeling is that concept



drift or shift may require an adaptation of N, which motivates heuristics for
adding and removing components. Current approaches using generative replay
are proposed in, e.g., [30]. Mixture models usually adapt only a small subset
of components for each update step due to their intrinsic reliance on distances
instead of scalar products. This is why they are less prone to catastrophic for-
getting than DNNs, an effect that has been demonstrated for self-organizing
maps in [67] which are an approximation to Gaussian Mixture Models (GMMs),
see [68]. Modeling the data density allows partitioning data space into Voronoi
cells, in each of which a separate linear classifier model can be trained. This
is the essence of the popular Locally Weighted Projection Regression (LWPR)
algorithm [69] which was explicitly constructed for continual classification in
robotics.

5.2 Clustering

Clustering is, in a certain sense, an approximation to density modeling, although
the inference is limited to determining the precise component a given data sample
was generated from. Clustering methods are normally trained using a k-means
type of algorithm, which approximates gradient descent on a loss function that
again approximates a GMM log-likelihood. CL for clustering algorithms faces
the same basic issue as in density modeling: a potentially variable number N
of cluster centers during concept drift or shift. This has been demonstrated in,
e.g., [70, 711, [72).

5.3 Generative learning

Generative learning aims to generate realistic samples (typically images) that
are similar to a set of training data. Typical models are generative adversar-
ial networks (GANSs), variational auto-encoders (VAEs), PixelCNN, FLoW or
GLoW, but many other variants have been proposed, see, e.g., [(3] for a re-
view. Training such generative models can be performed, e.g., in the CL default
scenario introduced in Sec [3| (apart from the supervision information), which
leads to catastrophic forgetting (CF) without additional measures. Several of
the approaches used in supervised learning have been successfully applied to
training generative models: knowledge distillation [74], EWC [75] and replay
[76, 77, [78], [79, [29]. To our knowledge, no generic approaches that are specific to
generative learning have been proposed, apart perhaps [80] where it is proposed
to learn specific transformations. This, however, is very specific to a particular
kind of (image) data and would have to be adapted if other kinds of data were
targeted.

5.4 Continual Representation Learning

Unsupervised training for learning representations for downstream applications
is a common use case for unsupervised learning. It was one of the motivations to
develop various types of auto-encoders and generative models in the early days



of deep learning. In CL, using an unsupervised criterion to learn representations
might be useful to avoid representations that overfit a specific task and, at the
same time, improve performance on downstream tasks [81 30} 3T]. Unsupervised
pre-training can also be useful for learning a general feature extractor that can
be frozen for future tasks [82] [83] [84].

5.5 Challenges of unsupervised CL

Unsupervised learning offers general learning criteria that can avoid the over-
specialization of supervised training and reduce forgetting. Nevertheless, unsu-
pervised CL faces the same challenges as supervised CL, and the default scenario
for supervised CL can be transferred. Moreover, in practice, unsupervised train-
ing tends to be more complex than supervised training, especially for generation
and density modeling, since it is harder to model a distribution than to deter-
mine a separating hypersurface between classes in data space. With the added
complexity of CL, unsupervised learning can be a formidable problem, especially
w.r.t. model and hyper-parameter selection.

6 Continual Reinforcement Learning

In reinforcement learning (RL), an agent learns to interact with its environment
by choosing a specific action for each state based on a reward signal. The (un-
known) underlying process is formalized as a Markov decision process (MDP),
where an optimal policy maximizes an expected reward. This scenario is inher-
ently a CL setting, since the distribution of the observed data depends on the
specific policy. The evolution of the policy throughout the learning process will
mechanically lead to the non-stationarity of the data distribution. Hence, RL
requires the ability to cope with non-stationary data. However, supplementary
non-stationary, for example, in the environment or in the objective to fulfill, can
increase the training difficulty and lead to a continual setting. We will use the
term Continual Reinforcement Learning (CRL) for denoting RL in settings that
go beyond the usual assumptions of non-stationarity made in conventional RL.

6.1 Existing Approaches

The works presented in [85, 86] introduce the importance of CL at an early stage
and especially investigated them in the context of reinforcement learning. More
recent works, e.g., [87, [19] revisit this area and consider additional aspects such
as catastrophic forgetting. Some frameworks to guide future research have also
been published [88] [§]. Both provide a comprehensive overview of the synergies
between continual and reinforcement learning.

RL Approaches Experience replay [89, 19 [90] is the most common approach
to counter non-stationarities in RL. Several variants are introduced, e.g., [91]
92, 93], 94, [95].

Continuous control, multi-task, and multi-goal are also research topics in-
tersecting with continual reinforcement learning, but their scenarios are not



always defined in a consistent fashion in the literature. In general, the goal
is to enable transfer learning between policies, which, however, omits the ca-
pacity for forgetting or re-adaptation. Some works assume a static objective
[96, 97, 98], 99, [TO0], others a static agent and/or environment [I0T], [T02] T03] or
none of both [104] [T05] T06]. In contrast, multi-agent reinforcement learning is
mostly related to some kind of joint training and is hence not related to CL.
For CRL, the agent needs to acquire new skills to handle time-varying con-
ditions, such as changes in environment [I07], observations or actions, and addi-
tionally must retain the old knowledge. A variety of approaches has been pub-
lished, among which knowledge-based distillations [27) 28] and context-based
decompositions [108] [109] are popular. Other works are concerned with the em-
ployed model [T10, 1111, 012, 013], off-policy algorithms [114], policy gradient
[I15] or a task-agnostic perspective [48]. Evaluations of known CL methods
(e.g., GEM, A-GEM, and replay) are also applied in the RL domain [IT6] [].

Benchmarks An overview of CRL environments can be found in [I17]. Dedi-
cated benchmarks which allow a systematical assessment are: Meta- World [43],
Continual World [I18] and L2Ezxplorer [119].

Libraries Some libraries aim at unifying CRL development to improve compa-
rability and accelerate progress: Sequoia [7], Avalanche ri [120], SaLinA [121],
Reverb [122] and CORA [123].

6.2 Assumptions in CRL

Three assumptions are commonly made in CRL: Foremost, a decomposition
into sub-tasks is assumed, even if their onset is unknown since most dedicated
CL methods (see Sec assume the existence of distinct sub-tasks. Another
assumption concerns samples, which are assumed to be non-contradictory within
sub-tasks, meaning the assessment of rewards changes only between sub-tasks, if
it changes at all. Finally, it is a common assumption that knowledge of sub-task
boundaries is provided. Most existing works are using information about sub-
task boundaries as if they were provided by an oracle, without the possibility to
recognize or determine them autonomously.

6.3 Challenges
In CRL, various types of drifts/shifts can appear:

Environment-related The agent successively observes its environment. There-
fore, on a short timescale, observations will always be non-stationary, even if the
environment is. In addition, the environment itself can change over time, or
rapid modifications can be encountered (environment shift). This would result
in novel states or transitions between these, resulting in an enlargement of the
actual involved MDP.

Goal-related By maximizing the reward signal, the agent attains a defined
objective. If the reward function changes, the agent experiences divergent in-
formation, leading to an inconsistent policy. In this setting, the definition of



states, actions and transitions does not change, so the underlying MDP remains
structurally intact. However, other rewards are assigned to previously learned
mappings, enforcing changes of transition probabilities.

Agent-related The decreasing influence of exploration, regardless of whether
off-policy methods such as Q-Learning or on-policy methods such as policy gra-
dient are used, temporarily creates a source of non-stationarity, resulting in a
time-varying sampling of the state-action space even with a static policy and a
static environment. Additionally, it is easily possible that sensors or actuators
degrade or undergo deliberate manipulations. Affecting possible actions, im-
mediate effects on the MDP, while a changed perception of states also impacts
transitions.

Sub-tasks and data acquisition For scenarios where the environment changes
in a discrete fashion, we can introduce the notion of sub-tasks as in the default
scenario for supervised CL, see Sec[3] A general challenge stems from the fact
that samples are acquired as an online time series and have no balancing guar-
antees at all. Moreover, it is possible that similar states and actions appear in
various sub-tasks, but with different assigned rewards, so sub-tasks are usually
not disjoint and may even be contradictory, requiring un- or re-learning, a con-
cept absent from the default supervised CL scenario. Depending on the type of
non-stationarity, sub-task onset can be unknown, and the detection of bound-
aries may be difficult if the drifts are gradual rather than abrupt. In addition,
the number of sub-tasks can be significantly higher than in supervised scenarios,
up to a point where the entire concept of sub-tasks becomes questionable. Lastly,
actions must be explicitly performed to transition to the appropriate subsequent
state. Therefore, a generative or offline sampling is of limited usefulness, at least
for exploration.

7 Discussion

The field of CL has expanded rapidly in recent years, which is why many as-
pects of CL are still fluid and not subject to a common consensus among re-
searchers. This is evidenced by a wide variety of assumptions, evaluation met-
rics, see Sec [3:2] and constraints, see Sec [2.2] The so-called default scenario,
see Sec [3] is the nearest thing to a commonly agreed scenario, yet many de-
tails fluctuate strongly between contributions. This leads to several interesting
consequences and opportunities for further research:

CL comparability A direct consequence is the difficulty to directly compare
results of different articles. This underscores the need, in CL more than in other
domains of machine learning, to precisely describe evaluation procedures and,
where possible, make use of existing libraries (see Sec [3| and and evaluation
procedures. Furthermore, as stated in Sec CL is a multi-objective problem
where achieving the cumulative baseline is important, but where other measures
(see Sec matter as well.

CL autonomy As explained in Sec[4.1} CL approaches should also be evaluated



based on the complexity and autonomy of the scenario they can generalize to,
to prevent them from overfitting to a specific CL scenario or assumptions.

CL scalability An aspect that is often omitted in current works in favor of
quantitative performance measures is scalability. Depending on a potential ap-
plication context, CL, even in the default scenario, may be faced with a huge
number of sub-tasks, each again containing enormous amounts of samples. If
this were not the case, the cumulative baseline, or equivalently some variant of
GDumb (see Sec , would be a much less costly and superior (w.r.t. per-
formance) alternative to using dedicated CL methods. So time and memory
complexity for the case where the number of sub-tasks is large should be in-
cluded in all new works on CL algorithms to ensure comparability, at least in
this respect.

CL generalization As was shown in Sec [4] [f] and [6} the default CL scenario
of Sec [3] can be generalized in many ways. Moreover, these chapters show that
many open issues remain, both technical and conceptual, when attempting to
generalize CL.

8 Conclusion

This review article attempts to give an overview of the current state of CL be-
yond the purely supervised default scenario, see Sec[3] We describe the various
complexification of the default scenario and the different learning paradigms, and
propose a classification based on the autonomy characteristics of algorithms. We
believe that attempts to generalize CL pose important questions about the fun-
damental assumptions behind CL. We thus encourage CL researchers to carefully
reflect upon the implicit, hidden assumptions in each CL approach they are deal-
ing with and whether they can (and should) be relaxed. In a still-fluid field such
as CL, a continuous re-examination of assumptions may lead to new solutions
that strongly contribute to the advancement of the field.

References

[1] Vladimir Vapnik. The nature of statistical learning theory. Springer science & business
media, 1999.

[2] Alexander Gepperth and Barbara Hammer. Incremental learning algorithms and ap-
plications. In FEuropean Symposium on Artificial Neural Networks (ESANN), Bruges,
Belgium, 2016.

[3] Timothée Lesort, Massimo Caccia, and Irina Rish. Understanding continual learning
settings with data distribution drift analysis. arXiv preprint arXiv:2104.01678, 2021.

[4] Massimo Caccia, Pau Rodriguez, Oleksiy Ostapenko, Fabrice Normandin, Min Lin, Lu-
cas Caccia, Issam Laradji, Irina Rish, Alexandre Lacoste, David Vazquez, and Laurent
Charlin. Online fast adaptation and knowledge accumulation: a new approach to con-
tinual learning. NeurlPS, 2020.

[5] Timothée Lesort, Vincenzo Lomonaco, Andrei Stoian, Davide Maltoni, David Filliat,
and Natalia Diaz-Rodriguez. Continual learning for robotics: Definition, framework,
learning strategies, opportunities and challenges. Information Fusion, 58:52 — 68, 2020.



[6]

7

8

[9

(10]

(11]

(12]
(13]

(14]

(15]

[16]

(17]

(18]

(19]

20]

(21]

(22]

23]

Gido M van de Ven and Andreas S Tolias. Three scenarios for continual learning. arXiv
preprint arXiv:1904.07734, 2019.

Fabrice Normandin, Florian Golemo, Oleksiy Ostapenko, Pau Rodriguez, Matthew D
Riemer, Julio Hurtado, Khimya Khetarpal, Dominic Zhao, Ryan Lindeborg, Timothée
Lesort, et al. Sequoia: A software framework to unify continual learning research. arXiv
preprint arXiv:2108.01005, 2021.

Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. Towards continual
reinforcement learning: A review and perspectives. arXiv preprint arXiv:2012.13490,
2020.

Benedikt Bagus and Alexander Gepperth. A study of continual learning methods for
Q-learning. In International Joint Conference on Neural Networks (IJCNN), 2022.

Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. Gdumb: A simple approach
that questions our progress in continual learning. In Furopean Conference on Computer
Vision, pages 524-540. Springer, 2020.

B Pfiilb and A Gepperth. A comprehensive, application-oriented study of catastrophic
forgetting in dnns. In International Conference on Learning Representations (ICLR),
2019.

Arthur Douillard and Timothée Lesort. Continuum: Simple management of complex
continual learning scenarios. arXiv preprint: 2102.06253, 2021.

Vincenzo Lomonaco, Lorenzo Pellegrini, Andrea Cossu, Gabriele Graffieti, and Antonio
Carta. Avalanche: an end-to-end library for continual learning. Github repository, 2021.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales Leonardis,
Gregory Slabaugh, and Tinne Tuytelaars. Continual learning: A comparative study on
how to defy forgetting in classification tasks. arXiv preprint: 1909.08383, 2019.

Eden Belouadah, Adrian Popescu, and Ioannis Kanellos. A comprehensive study of class
incremental learning algorithms for visual tasks. Neural Networks, 135:38-54, 2021.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Des-
jardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, et al. Overcoming catastrophic forgetting in neural networks. Proc. of the
national academy of sciences, 2017.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual
learning. Advances in neural information processing systems, 30, 2017.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert.
iCARL: Incremental classifier and representation learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2001-2010, 2017.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne.
Experience replay for continual learning. Advances in Neural Information Processing
Systems, 32, 2019.

Hanul Shin, Jung Kwon Lee, Jachong Kim, and Jiwon Kim. Continual learning with
deep generative replay. In Advances in Neural Information Processing Systems, pages
2990-2999, 2017.

A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K. Kavukcuoglu,
R. Pascanu, and R. Hadsell. Progressive neural networks. ArXiv e-prints, jun 2016.

Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A.
Rusu, Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient
descent in super neural networks. CoRR, abs/1701.08734, 2017.

Tom Veniat, Ludovic Denoyer, and MarcAurelio Ranzato. Efficient continual learning
with modular networks and task-driven priors. In International Conference on Learning
Representations, 2021.



[24]

[25]

[26]

27)

28]

29]

(30]

(31]

(32]

33]

(34]
(35]

(36]

(37]

(38]
(39]

[40]

[41]

Oleksiy Ostapenko, Pau Rodriguez, Massimo Caccia, and Laurent Charlin. Continual
learning via local module composition. In Advances in Neural Information Processing
Systems, 2021.

Jorge A Mendez, Harm van Seijen, and Eric Eaton. Modular lifelong reinforcement
learning via neural composition. In International Conference on Learning Representa-
tions(ICLR), 2022.

Timothée Lesort, Thomas George, and Irina Rish. Continual learning in deep networks:
an analysis of the last layer. arXiv preprint arXiv:2106.01834, 2021.

René Traoré Kalifou, Hugo Caselles-Dupré, Timothée Lesort, Te Sun, Natalia Diaz-
Rodriguez, and David Filliat. Continual reinforcement learning deployed in real-life
using policy distillation and sim2real transfer. In ICML Workshop on Multi-Task and
Lifelong Learning, volume 4, 2019.

René Traoré, Hugo Caselles-Dupré, Timothée Lesort, Te Sun, Guanghang Cai, Natalia
Diaz-Rodriguez, and David Filliat. DisCoRL: Continual reinforcement learning via policy
distillation. arXiv preprint arXiv:1907.05855, 2019.

Timothée Lesort, Hugo Caselles-Dupré, Michael Garcia-Ortiz, Jean-Francois Goudou,
and David Filliat. Generative models from the perspective of continual learning. In
International Joint Conference on Neural Networks(IJCNN), 2019.

Dushyant Rao, Francesco Visin, Andrei A. Rusu, Yee Whye Teh, Razvan Pascanu,
and Raia Hadsell. Continual unsupervised representation learning. arXiv preprint:
1910.14481, 2019.

Divyam Madaan, Jaechong Yoon, Yuanchun Li, Yunxin Liu, and Sung Ju Hwang. Repre-
sentational continuity for unsupervised continual learning. In International Conference
on Learning Representations(ICLR), 2021.

Ronald Kemker, Marc McClure, Angelina Abitino, Tyler Hayes, and Christopher Kanan.
Measuring catastrophic forgetting in neural networks. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 32, 2018.

Natalia Diaz-Rodriguez, Vincenzo Lomonaco, David Filliat, and Davide Maltoni. Don’t
forget, there is more than forgetting: new metrics for continual learning. arXiv preprint:
1810.13166, 2018.

Davide Maltoni and Vincenzo Lomonaco. Continuous learning in single-incremental-task
scenarios. Neural Networks, 116:56-73, 2019.

Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catas-
trophic forgetting with hard attention to the task. ICML, 80:4548-4557, 10-15 Jul 2018.

Thang Doan, Mehdi Abbana Bennani, Bogdan Mazoure, Guillaume Rabusseau, and
Pierre Alquier. A theoretical analysis of catastrophic forgetting through the NTK overlap
matrix. In International Conference on Artificial Intelligence and Statistics, pages 1072—
1080, 2021.

Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient de-
scent for continual learning. In International Conference on Artificial Intelligence and
Statistics, pages 3762-3773. PMLR, 2020.

Benedikt Pfiilb. Continual Learning with Deep Learning Methods in an Application-
Oriented Context. PhD thesis, University of Applied Sciences Fulda, Germany, 2022.

David Lopez-Paz and Marc-Aurelio Ranzato. Gradient episodic memory for continual
learning. In Advances in Neural Information Processing Systems. 2017.

Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi, Mohammad
Rastegari, Jason Yosinski, and Ali Farhadi. Supermasks in superposition. In Advances
in Neural Information Processing Systems, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing Atari with deep reinforcement learning.
arXiw preprint: 1312.5602, 2013. cite arxiv:1312.5602Comment: NIPS Deep Learning
‘Workshop 2013.



[42]

(43]

[44]

[45]

[46]

[47)

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

58]

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-
based control. In TROS, pages 5026-5033. IEEE, 2012.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn,
and Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta
reinforcement learning. In Conference on Robot Learning, pages 1094-1100. PMLR,
2020.

Byungju Kim, Hyunwoo Kim, Kyungsu Kim, Sungjin Kim, and Junmo Kim. Learning
not to learn: Training deep neural networks with biased data. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9012-9020,
2019.

Itai Gat, Idan Schwartz, Alexander Schwing, and Tamir Hazan. Removing bias in multi-
modal classifiers: Regularization by maximizing functional entropies. Advances in Neural
Information Processing Systems, 33:3197-3208, 2020.

Yi Li and Nuno Vasconcelos. Repair: Removing representation bias by dataset resam-
pling. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 9572-9581, 2019.

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab,
Senthil Yogamani, and Patrick Pérez. Deep reinforcement learning for autonomous
driving: A survey. IEEE Transactions on Intelligent Transportation Systems, 2021.

Massimo Caccia, Jonas Mueller, Taesup Kim, Laurent Charlin, and Rasool Fakoor. Task-
agnostic continual reinforcement learning: In praise of a simple baseline. arXiv preprint
arXiw:2205.14495, 2022.

Chen Zeno, Itay Golan, Elad Hoffer, and Daniel Soudry. Task agnostic continual learning
using online variational bayes. arXiv preprint: 1803.10123, 2018.

Xu He, Jakub Sygnowski, Alexandre Galashov, Andrei A. Rusu, Yee Whye Teh, and Raz-
van Pascanu. Task agnostic continual learning via meta learning. ArXiv, abs/1906.05201,
2019.

Martin Mundt, Yong Won Hong, Tuliia Pliushch, and Visvanathan Ramesh. A wholistic
view of continual learning with deep neural networks: Forgotten lessons and the bridge
to active and open world learning. arXiw preprint arXiv:2009.01797, 2020.

Matthias Perkonigg, Johannes Hofmanninger, and Georg Langs. Continual active learn-
ing for efficient adaptation of machine learning models to changing image acquisition. In
International Conference on Information Processing in Medical Imaging, pages 649—660.
Springer, 2021.

James Smith, Jonathan Balloch, Yen-Chang Hsu, and Zsolt Kira. Memory-efficient semi-
supervised continual learning: The world is its own replay buffer. In 2021 International
Joint Conference on Neural Networks (IJCNN), pages 1-8. IEEE, 2021.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny.
Efficient lifelong learning with A-GEM. In International Conference on Learning Rep-
resentations(ICLR), 2019.

Jonathan Schwarz, Jelena Luketina, Wojciech M Czarnecki, Agnieszka Grabska-
Barwinska, Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A
scalable framework for continual learning. In ICML, 2018.

Chris Dongjoo Kim, Jinseo Jeong, and Gunhee Kim. Imbalanced continual learning with
partitioning reservoir sampling. In Proceedings of the IEEE FEuropean Conference on
Computer Vision (ECCV), 2020.

Aristotelis Chrysakis and Marie-Francine Moens. Online continual learning from im-
balanced data. In International Conference on Machine Learning, pages 1952—-1961.
PMLR, 2020.

Timothée Lesort. Continual feature selection: Spurious features in continual learning.
arXiv preprint arXiv:2203.01012, 2022.



[59]

[60]

[61]
(62]
[63]
[64]

[65]

[66]

(67)

(68]

(69]

[70]

[71]

(72]

(73]

[74]

[75]

[76]

[77)

Mohamed Abdelsalam, Mojtaba Faramarzi, Shagun Sodhani, and Sarath Chandar. Tirc:
Incremental implicitly-refined classification. CVPR, pages 11038-11047, 2021.

N Dzemidovich and A Gepperth. An empirical comparison of generators in replay-based
continual learning. In Furopean Symposium on Artificial Neural Networks(ESANN),
2022.

B Pfiilb, B Bagus, and A Gepperth. Continual learning with fully probabilistic models.
In CVPR Workshop CLVISION Findings paper, 2021.

B Pfilb and A Gepperth. Overcoming catastrophic forgetting with gaussian mixture
replay. In International Joint Conference on Neural Networks(IJCNN), 2021.

Rafael Coimbra Pinto and Paulo Martins Engel. A fast incremental gaussian mixture
model. PloS one, 10(10):e0139931, 2015.

Konstantin Shmelkov, Cordelia Schmid, and Karteek Alahari. Incremental learning of
object detectors without catastrophic forgetting. CoRR, abs/1708.06977, 2017.

Dragoljub Pokrajac, Aleksandar Lazarevic, and Longin Jan Latecki. Incremental local
outlier detection for data streams. In 2007 IEEE symposium on computational intelli-
gence and data mining, pages 504-515. IEEE, 2007.

Matej Kristan, Danijel Skocaj, and Ales Leonardis. Incremental learning with gaussian
mixture models. In Computer vision winter workshop, pages 25—-32. Slovenian Pattern
Recognition Soc. Ljubljana, Slovenia, 2008.

A Gepperth and B Pfiilb. A rigorous link between self-organizing maps and gaussian
mixture models. In International Conference on Artificial Neural Networks (ICANN),
2020.

A Gepperth. Incremental learning with a homeostatic self-organizing neural architecture.
Neural Computing and Applications, 2019.

Sethu Vijayakumar and Stefan Schaal. Locally weighted projection regression: An o (n)
algorithm for incremental real time learning in high dimensional space. In International
Conference on Machine Learning (ICML), volume 1, pages 288-293. Morgan Kaufmann,
2000.

Duc Truong Pham, Stefan Simeonov Dimov, and CD Nguyen. An incremental k-means
algorithm. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of
Mechanical Engineering Science, 218(7):783-795, 2004.

Bryant Aaron, Dan E Tamir, Naphtali D Rishe, and Abraham Kandel. Dynamic incre-
mental k-means clustering. In 201/ international conference on computational science
and computational intelligence, volume 1, pages 308-313. IEEE, 2014.

Adil M Bagirov, Julien Ugon, and Dean Webb. Fast modified global k-means algorithm
for incremental cluster construction. Pattern recognition, 44(4):866-876, 2011.

Ceren Giizel Turhan and Hasan Sakir Bilge. Recent trends in deep generative models:
a review. In 2018 3rd International Conference on Computer Science and Engineering
(UBMK), pages 574-579. IEEE, 2018.

Ari Seff, Alex Beatson, Daniel Suo, and Han Liu. Continual learning in generative
adversarial nets. arXiv preprint: 1705.08395, 2017.

Mengyao Zhai, Lei Chen, Frederick Tung, Jiawei He, Megha Nawhal, and Greg Mori.
Lifelong gan: Continual learning for conditional image generation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 2759-2768, 2019.

Felix Wiewel and Bin Yang. Continual learning for anomaly detection with variational
autoencoder. In ICASSP 2019 - 2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 38373841, 2019.

Damian Campo, Giulia Slavic, Mohamad Baydoun, Lucio Marcenaro, and Carlo Regaz-
zoni. Continual learning of predictive models in video sequences via variational autoen-
coders. In 2020 IEEE International Conference on Image Processing (ICIP), pages
753-757, 2020.



(78]

[79]

(80]

(81]

(82]

(83]

(84]
(85]
(86]
(87]

(88]

(89]

[90]

[91]

[92]

(93]
94]

[95]

[96]

Timothée Lesort, Alexander Gepperth, Andrei Stoian, and David Filliat. Marginal replay
vs conditional replay for continual learning. In International Conference on Artificial
Neural Networks, pages 466—480. Springer, 2019.

Jason Ramapuram, Magda Gregorova, and Alexandros Kalousis. Lifelong generative
modeling. arXiv preprint arXiv:1705.09847, 2017.

Sakshi Varshney, Vinay Kumar Verma, PK Srijith, Lawrence Carin, and Piyush Rai.
Cam-GAN: Continual adaptation modules for generative adversarial networks. In Thirty-
Fifth Conference on Neural Information Processing Systems, 2021.

Enrico Fini, Victor G Turrisi da Costa, Xavier Alameda-Pineda, Elisa Ricci, Karteek
Alahari, and Julien Mairal. Self-supervised models are continual learners. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
9621-9630, 2022.

René Traoré, Hugo Caselles-Dupré, Timothée Lesort, Te Sun, Guanghang Cai, Na-
talia Diaz Rodriguez, and David Filliat. DisCoRL: Continual reinforcement learning
via policy distillation. CoRR, abs/1907.05855, 2019.

Oleksiy Ostapenko, Timothee Lesort, Pau Rodriguez, Md Rifat Arefin, Arthur Douil-
lard, Irina Rish, and Laurent Charlin. Foundational models for continual learning: An
empirical study of latent replay, 2022.

Lucas Caccia and Joelle Pineau. Special: Self-supervised pretraining for continual learn-
ing. In IJCAI, Workshop on Continual Semi-Supervised Learning, 2021.

Mark Bishop Ring. Continual learning in reinforcement environments. PhD thesis,
University of Texas at Austin Austin, Texas 78712, 1994.

Sebastian Thrun and Tom M Mitchell. Lifelong robot learning. Robotics and autonomous
systems, 15(1-2):25-46, 1995.

Ju Xu and Zhanxing Zhu. Reinforced continual learning. Advances in Neural Informa-
tion Processing Systems, 31, 2018.

Timothée Lesort, Vincenzo Lomonaco, Andrei Stoian, Davide Maltoni, David Filliat,
and Natalia Diaz-Rodriguez. Continual learning for robotics: Definition, framework,
learning strategies, opportunities and challenges. Information fusion, 58:52—68, 2019.

Shangtong Zhang and Richard S Sutton. A deeper look at experience replay. arXiv
preprint arXiv:1712.01275, 2017.

William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo
Larochelle, Mark Rowland, and Will Dabney. Revisiting fundamentals of experience
replay. In International Conference on Machine Learning, pages 3061-3071. PMLR,
2020.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience
replay. arXiv preprint arXiv:1511.05952, 2015.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter
Welinder, Bob McGrew, Josh Tobin, OpenAl Pieter Abbeel, and Wojciech Zaremba.
Hindsight experience replay. Advances in Neural Information Processing Systems, 30,
2017.

David Isele and Akansel Cosgun. Selective experience replay for lifelong learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Guido Novati and Petros Koumoutsakos. Remember and forget for experience replay.
In International Conference on Machine Learning, pages 4851-4860. PMLR, 2019.

Hao Hu, Jianing Ye, Guangxiang Zhu, Zhizhou Ren, and Chongjie Zhang. Generalizable
episodic memory for deep reinforcement learning. arXiv preprint arXiv:2103.06469,
2021.

Haitham Bou Ammar, Eric Eaton, Paul Ruvolo, and Matthew Taylor. Online multi-task
learning for policy gradient methods. In International conference on machine learning,
pages 1206-1214. PMLR, 2014.



[97)

(98]
[99]

[100]

[101]

[102]

[103]

[104]

[105)

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

Yee Teh, Victor Bapst, Wojciech M Czarnecki, John Quan, James Kirkpatrick, Raia
Hadsell, Nicolas Heess, and Razvan Pascanu. Distral: Robust multitask reinforcement
learning. Advances in Neural Information Processing Systems, 30, 2017.

Artyom Y Sorokin and Mikhail S Burtsev. Continual and multi-task reinforcement
learning with shared episodic memory. arXiv preprint arXiv:1905.02662, 2019.

Joao Ribeiro, Francisco S. Melo, and Joao Dias. Multi-task learning and catastrophic
forgetting in continual reinforcement learning. arXiv preprint arXiv:1909.10008, 2019.

Robin Schiewer and Laurenz Wiskott. Modular networks prevent catastrophic interfer-
ence in model-based multi-task reinforcement learning. In International Conference on
Machine Learning, Optimization, and Data Science, pages 299-313. Springer, 2021.

Rui Zhao, Xudong Sun, and Volker Tresp. Maximum entropy-regularized multi-goal
reinforcement learning. In International Conference on Machine Learning, pages 7553—
7562. PMLR, 2019.

Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang. Multi-task reinforcement learning
with soft modularization. Advances in Neural Information Processing Systems, 33:4767—
4777, 2020.

Abhishek Gupta, Justin Yu, Tony Z Zhao, Vikash Kumar, Aaron Rovinsky, Kelvin Xu,
Thomas Devlin, and Sergey Levine. Reset-free reinforcement learning via multi-task
learning: Learning dexterous manipulation behaviors without human intervention. In
IEEE International Conference on Robotics and Automation (ICRA), pages 6664—6671.
IEEE, 2021.

Zhiyuan Xu, Kun Wu, Zhengping Che, Jian Tang, and Jieping Ye. Knowledge transfer
in multi-task deep reinforcement learning for continuous control. Advances in Neural
Information Processing Systems, 33:15146-15155, 2020.

Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jon-
schkowski, Chelsea Finn, Sergey Levine, and Karol Hausman. Mt-opt: Continuous
multi-task robotic reinforcement learning at scale. arXiv preprint arXiv:2104.08212,
2021.

Stephen Kelly, Tatiana Voegerl, Wolfgang Banzhaf, and Cedric Gondro. Evolving hi-
erarchical memory-prediction machines in multi-task reinforcement learning. Genetic
Programming and Evolvable Machines, 22(4):573-605, 2021.

Sindhu Padakandla. A survey of reinforcement learning algorithms for dynamically
varying environments. ACM Computing Surveys (CSUR), 54(6):1-25, 2021.

Jorge A Mendez, Harm van Seijen, and Eric Eaton. Modular lifelong reinforcement learn-
ing via neural composition. In International Conference on Learning Representations,
2021.

Tiantian Zhang, Xueqgian Wang, Bin Liang, and Bo Yuan. Catastrophic interference in
reinforcement learning: A solution based on context division and knowledge distillation.
IEEE Transactions on Neural Networks and Learning Systems, 2022.

Christos Kaplanis, Murray Shanahan, and Claudia Clopath. Continual reinforcement
learning with complex synapses. In International Conference on Machine Learning,
pages 2497-2506. PMLR, 2018.

Christos Kaplanis, Murray Shanahan, and Claudia Clopath. Policy consolidation for
continual reinforcement learning. arXiv preprint arXiv:1902.00255, 2019.

Yat Long Lo and Sina Ghiassian. Overcoming catastrophic interference in online rein-
forcement learning with dynamic self-organizing maps. arXiv preprint arXiv:1910.13213,
2019.

Yizhou Huang, Kevin Xie, Homanga Bharadhwaj, and Florian Shkurti. Continual model-
based reinforcement learning with hypernetworks. In IEEE International Conference on
Robotics and Automation (ICRA), pages 799-805. IEEE, 2021.



[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

Annie Xie, James Harrison, and Chelsea Finn. Deep reinforcement learning amidst
lifelong non-stationarity. arXiv preprint arXiw:2006.10701, 2020.

Jorge Mendez, Boyu Wang, and Eric Eaton. Lifelong policy gradient learning of fac-
tored policies for faster training without forgetting. Advances in Neural Information
Processing Systems, 33:14398-14409, 2020.

Craig Atkinson, Brendan McCane, Lech Szymanski, and Anthony Robins. Pseudo-
rehearsal: Achieving deep reinforcement learning without catastrophic forgetting. Neu-
rocomputing, 428:291-307, 2021.

Khimya Khetarpal, Shagun Sodhani, Sarath Chandar, and Doina Precup. Environments
for lifelong reinforcement learning. arXiv preprint arXiv:1811.10732, 2018.

Maciej Wolczyk, Michal Zajac, Razvan Pascanu, Lukasz Kucinski, and Piotr Milo$.
Continual world: A robotic benchmark for continual reinforcement learning. In Advances
in Neural Information Processing Systems, volume 34, 2021.

Erik C Johnson, Eric Q Nguyen, Blake Schreurs, Chigozie S Ewulum, Chace
Ashcraft, Neil M Fendley, Megan M Baker, Alexander New, and Gautam K Vallabha.
L2explorer: A lifelong reinforcement learning assessment environment. arXiv preprint
arXiv:2203.07454, 2022.

Nicolé Lucchesi, Antonio Carta, Vincenzo Lomonaco, and Davide Bacciu. Avalanche
rl: A continual reinforcement learning library. In International Conference on Image
Analysis and Processing, pages 524—535. Springer, 2022.

Ludovic Denoyer, Alfredo de la Fuente, Song Duong, Jean-Baptiste Gaya, Pierre-
Alexandre Kamienny, and Daniel H Thompson. Salina: Sequential learning of agents.
arXiv preprint arXw:2110.07910, 2021.

Albin Cassirer, Gabriel Barth-Maron, Eugene Brevdo, Sabela Ramos, Toby Boyd,
Thibault Sottiaux, and Manuel Kroiss. Reverb: A framework for experience replay.
arXiv preprint arXiw:2102.04736, 2021.

Sam Powers, Eliot Xing, Eric Kolve, Roozbeh Mottaghi, and Abhinav Gupta. CORA:
Benchmarks, baselines, and metrics as a platform for continual reinforcement learning
agents. arXw preprint arXiw:2110.10067, 2021.



	Introduction
	Framework and Goals of Continual Learning
	Data distribution Drifts
	Common CL constraints

	The default scenario for CL
	CL approaches for the default scenario
	Metrics and evaluation procedures
	Benchmarks

	Generalizations of the default scenario
	Classifying the autonomy level of CL algorithms
	Towards a Generalization of the Default Setting

	Unsupervised Continual Learning
	Density modeling
	Clustering
	Generative learning
	Continual Representation Learning
	Challenges of unsupervised CL

	Continual Reinforcement Learning
	Existing Approaches
	Assumptions in CRL
	Challenges

	Discussion
	Conclusion

