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Abstract We present an approach for efficiently training Gaussian Mixture Model
(GMM) by Stochastic Gradient Descent (SGD) with non-stationary, high-dime-
nsional streaming data. Our training scheme does not require data-driven pa-
rameter initialization (e.g., k-means) and can thus be trained based on a random
initialization. Furthermore, the approach allows mini-batch sizes as low as 1, which
are typical for streaming-data settings. Major problems in such settings are unde-
sirable local optima during early training phases and numerical instabilities due to
high data dimensionalities. We introduce an adaptive annealing procedure to ad-
dress the first problem, whereas numerical instabilities are eliminated by using an
exponential-free approximation to the standard GMM log-likelihood. Experiments
on a variety of visual and non-visual benchmarks show that our SGD approach
can be trained completely without, for instance, k-means based centroid initializa-
tion. It also compares favorably to an online variant of Expectation-Maximization
(EM) – stochastic EM (sEM), which it outperforms by a large margin for very
high-dimensional data.

Keywords Gaussian Mixture Model · Stochastic Gradient Descent

1 Introduction

This contribution focuses on Gaussian Mixture Model (GMM), which represent a
probabilistic unsupervised model for clustering and density estimation, allowing
sampling and outlier detection. GMMs have been used in a wide range of sce-
narios, see [?]. Commonly, free parameters of a GMM are estimated using the
Expectation-Maximization (EM) algorithm [?], which does not require learning
rates and automatically enforces all GMM constraints. A popular online variant is
stochachstic EM [?], which can be trained mini-batch wise and is thus more suited
for large datasets or streaming data.
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1.1 Motivation

Intrinsically, EM is a batch-type algorithm. Therefore, memory requirements can
become excessive for large datasets. In addition, streaming-data scenarios require
data samples to be processed one by one, which is impossible for a batch-type
algorithm. Moreover, data statistics may be subject to changes over time (concept
drift/shift), to which the GMM should adapt. In such scenarios, an online, mini-
batch type of optimization such as SGD is attractive since it can process samples
one by one, has modest, fixed memory requirements, and can adapt to changing
data statistics.

1.2 Related Work

Online EM is a technique for performing EM mini-batch wise, allowing to process
large datasets. One branch of previous research [?,?,?] has been devoted to the de-
velopment of stochastic Expectation-Maximization (sEM) algorithms that reduce
to the original EM method in the limit of large batch sizes. The variant presented
in [?] is widely used due to its simplicity and efficiency for large datasets. Such
approaches come at the price of additional hyper-parameters (e.g., step size, mini-
batch size, step size reduction), thus, removing a key advantage of EM over SGD.
Another approach is to modify the EM algorithm itself by, e.g., including heuristics
for adding, splitting and merging centroids [?,?,?,?,?,?,?]. This allows GMM-like
models to be trained by presenting one sample after another. The models work
well in several application scenarios, but their learning dynamics are impossible to
analyze mathematically. They also introduce a high number of parameters. Apart
from these works, some authors avoid the issue of extensive datasets by determin-
ing smaller “core sets” of representative samples and performing vanilla EM [?].
SGD for training GMM has, as far as we know, been recently treated only in
[?,?]. In this body of work, GMM constraint enforcement is ensured by using man-
ifold optimization techniques and re-parameterization/regularization, thereby in-
troducing additional hyper-parameters. The issue of local optima is side-stepped by
a k-means type centroid initialization, and the used datasets are low-dimensional
(36 dimensions).
Annealing and Approximation approaches for GMMs were proposed in
[?,?,?,?]. However, the regularizers proposed in [?,?] significantly differ from our
scheme. GMM log-likelihood approximations, similar to the one used here, are
discussed in, e.g., [?] and [?], but only in combination with EM training. A similar
“hard assignment” approximation is performed in [?].
GMM Training in High-Dimensional Spaces is discussed in several publica-
tions: A conceptually very interesting procedure is proposed in [?]. It exploits the
properties of high-dimensional spaces in order to achieve learning with a number of
samples that is polynomial in the number of Gaussian components. This is difficult
to apply in streaming settings, since higher-order moments need to be estimated
beforehand, and also because the number of samples is usually unknown. Training
GMM-like lower-dimensional factor analysis models by SGD on high-dimensional
image data is successfully demonstrated in [?]. They avoid numerical issues, but,
again, sidestep the local optima issue by using k-means initialization. The numer-
ical issues associated with log-likelihood computation in high-dimensional spaces
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are generally mitigated by using the “logsumexp” trick [?], which is, however, in-
sufficient for ensuring numerical stability for particularly high-dimensional data,
such as images.

1.3 Goals and Contributions

The goals of this article are to establish GMM training by SGD as a simple
and scalable alternative to sEM in streaming scenarios with potentially high-
dimensional data. The main novel contributions are:

– a proposal for numerically stable GMM training by SGD that outperforms
sEM for high data dimensionalities,

– an automatic annealing procedure that ensures SGD convergence without prior
knowledge of the data (no k-means initialization) which is beneficial for stream-
ing data,

– a computationally efficient method for enforcing all GMM constraints in SGD,
– a convergence proof for the annealing procedure.

Additionally, we provide a TensorFlow implementation.1

2 Gaussian Mixture Models

GMMs are probabilistic models that intend to explain the observed data X = {xn}
by expressing their density as a weighted mixture of K Gaussian component den-
sities N (x;µk,Pk)≡Nk(x):

p(xn) =
K∑
k=1

πkNk(xn). (1)

Here, we parameterize Gaussian densities by precision matrices Pk = Σ−1
k instead

of covariances Σk. The component weights πk represent another set of GMM
parameters, which modulate the overall influence of the Gaussian distribution.
For a derivation of eq. (1), we must introduce the probabilistic foundations of
GMMs. These models assume that each observed data sample {xn} is drawn from
one of the Gaussian component densities Nk. The selection of this component
density is assumed to depend on an unobserved (and unobservable) latent variable
zn ∈ {1, . . . ,K} which follows an unknown distribution. This is formalized for a
GMM with K components by formulating the complete-data likelihood for a single
data sample as:

p(xn, zn) = πznNzn(xn), (2)

Since the latent variables are, by construction, unobservable, we must marginalize
them out of eq. (15) in order to obtain an expression suitable for optimization.
This gives us the incomplete-data likelihood for a single data sample xn:

p(xn) =
K∑
k=1

p(xn, k), (3)

1 https://gitlab.cs.hs-fulda.de/ML-Projects/sgd-gmm

https://gitlab.cs.hs-fulda.de/ML-Projects/sgd-gmm
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which depends on observable quantities only. Please compare this to eq. (1). The
incomplete-data likelihood for all samples is thus given by:

p(X) =
∏
n

p(xn) =
∏
n

∑
k

p(xn, k) =
∏
n

∑
k

πkNk(xn), (4)

where we have inserted eq. (15) in the last step. Passing to the log-domain (as
it is common for probabilistic models), we obtain the total incomplete-data log-
likelihood for all observed data samples:

L = log p(X) =
∑
n

log
∑
k

πkNk(xn). (5)

The function L contains only observable quantities and is a suitable loss func-
tion for optimization. For convenience and numerical stability, the sum is usually
replaced by an expectation, and we follow this convention:

L = En

[
log
∑
k

πkNk(xn)

]
. (6)

Please note that L represents the likelihood of the observed data under the GMM
with current parameters, and must therefore be maximized to obtain a better
explanation of the data.

2.1 GMM Constraint Enforcement for SGD

GMMs require the mixture weights to be normalized:
∑
k πk = 1 and the precision

matrices to be positive definite: x>Pkx≥ 0 ∀x. These constraints must be explic-
itly enforced after each SGD step:
Weights πk are adapted according to [?], which replaces them by other free pa-
rameters ξk from which the πk are computed so that normalization is ensured:

πk =
exp(ξk)∑
j exp(ξj)

. (7)

Diagonal precision matrices are re-parameterized as Pk =D2
k, with diagonal

matrices Dk (Cholesky decomposition). They are, therefore, guaranteed to be

positive definite. Hence, detΣk = detP−1
k =

(
det(D2

k)
)−1

=
(

Tr(Dk)
)−2

can be
computed efficiently. Since we are dealing with high-dimensional data, precision
matrices are always taken to be diagonal, since full matrices would be prohibitive
w.r.t. memory consumption and the number of free parameters.

Full precision matrices are treated here for completeness’ sake, since they are
infeasible for high-dimensional data. We represent them as a spectral decompo-
sition into eigenvectors vi and eigenvalues λ2i : Pk =

∑
i λ

2
iviv

>
i , which ensures

positive-definiteness. This can be seen from detΣk = detP−1
k =

∏
i λ
−2
i . In order

to maintain a correct representation of eigenvectors, these have to be orthonor-
malized after each SGD step.
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2.2 Max-Component Approximation for GMM

The log-likelihood eq. (5) is difficult to optimize by SGD due to numerical problems
(mainly underflows and resulting divisions by zero) for high data dimensionalities.
This is why we intend to find a lower bound that we can optimize instead. A simple
scheme is given by

L=En

[
log
∑
k

πkNk(xn)

]
≥En

[
log maxk

(
πkNk(xn)

)]
= L̂=En

[
log
(
πk∗Nk∗(xn)

)] (8)

where k∗= arg maxk πkNk(xn). This is what we call the max-component approxi-
mation of eq. (8). In contrast to the lower bound that is constructed for EM-type
algorithms, our bound is usually not tight. Nevertheless, we will demonstrate later
that it is a very good approximation when data are high-dimensional. The ad-
vantage of L̂ is the elimination of exponentials causing numerical instabilities.
The “logsumexp” trick is normally employed with GMMs to rectify this by fac-
toring out the largest component probability Nk∗ . This mitigates but does not
avoid numerical problems when distances are high, a common occurrence for high
data dimensions. To give an example: we normalize the component probability
Nk = e−101 (using 32-bit floats) by the highest probability Nk∗ = e3, and we ob-
tain Nk

Nk∗
= e−104, which produces an underflow.

2.3 Undesirable Local Optima in SGD Training

A crucial issue when optimizing L̂ (and indeed L as well) by SGD without k-
means initialization concerns undesirable local optima. Most notable are the sin-
gle/sparse-component solutions, see fig. 1. They are characterized by one or
several components {ki} having large weights, with centroid and precision matrices
given by the mean and covariance of a significant subset Xki ⊂X of the data X:
πki� 0, µki =E[Xki ], Σki = Cov(Xki), whereas the remaining components k are
characterized by πk≈ 0, µk =µ(t= 0), Pk =P (t = 0). Thus, these unconverged
components are almost never Best Matching Unit (BMU) k∗. The max-operation

in L̂ causes gradients like ∂L̂
∂µk

to contain δkk∗ :

∂L̂
∂µk

= En [Pk (xn − µk) δkk∗ ]

∂L̂
∂Pk

= En
[(

(Pk)−1 − (xn − µk)(xn − µk)>
)
δkk∗

]
∂L̂
∂πk

= π−1
k En [δkk∗ ] .

(9)

This implies that the gradients are non-zero only for the BMU k∗. Thus, the
gradients of unconverged components vanish, implying that they remain in their
unconverged state.
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Fig. 1 A sparse-component-solution with superimposed component weights πk, obtained when
performing naive SGD on MNIST.

2.4 Annealing Procedure for Avoiding Local Optima

Our approach for avoiding sparse-component solutions is to punish their char-
acteristic response patterns by replacing L̂ by the smoothed max-component log-
likelihood L̂σ:

L̂σ = Enmaxk

[∑
j

gkj(σ) log
(
πjNj(xn)

)]

= En
∑
j

gk∗j(σ) log
(
πjNj(xn)

)
.

(10)

Regarding its interpretation, we are assuming that the K GMM components are
arranged in a quadratic 2D grid of size

√
K ×

√
K. Equally, each gk is interpreted

as 2D grid of size
√
K ×

√
K, (see fig. 2), with values given by a periodically

continued 2D Gaussian centered on component k. With this interpretation, Equa-
tion (10) represents a 2D convolution with periodic boundary conditions (in the
sense used in image processing) of the log (πkNk(x)) by a smoothing filter whose
width is controlled by σ. Thus, eq. (10) is maximized if the log-probabilities fol-
low a uni-modal Gaussian profile of spatial variance ∼σ2, which heavily punishes
single/sparse-component solutions that have a locally delta-like response. A 1D
grid for annealing, together with 1D smoothing filters, was verified to fulfill this
purpose as well. We chose 2D because it allows for an easier visualization while
incurring an identical computational cost.

Annealing starts with a large value of σ(t) =σ0 and reduces it over time to an
asymptotic small value of σ=σ∞, thus, smoothly transitioning from L̂σ in eq. (10)
into L̂ in eq. (8).

Annealing Control regulates the decrease of σ. This quantity defines an effec-
tive upper bound on L̂σ (see section 2.6 for a proof). An implication is that the
loss will be stationary once this bound is reached, which we consider a suitable
indicator for reducing σ. We implement an annealing control that sets σ← 0.9σ
whenever the loss is considered sufficiently stationary. Stationarity is detected by
maintaining an exponentially smoothed average `(t) = (1−α)`(t− 1) +αL̂σ(t) on
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Fig. 2 Visualization of Gaussian smoothing filters gk, of width σ, used in annealing for three
different values of σ. The gk are placed on a 2D grid, darker pixels indicate larger values.
Over time, σ(t) is reduced (middle and right pictures) and the Gaussians approach a delta
peak, thus, recovering the original, non-annealed loss function. Note that the grid is considered
periodic in order to avoid boundary effects, so the gk are themselves periodic.

time scale α. Every 1
α iterations, we compute the fractional increase of L̂σ as

∆ =
`(t)− `(t− α−1)

`(t− α−1)− L̂σ(t = 0)
(11)

and consider the loss stationary iff ∆<δ (the latter being a free parameter). The
choice of the time constant for smoothing L̂σ is outlined in the following section.

2.5 Training Procedure for SGD

Training GMMs by SGD is performed by maximizing the smoothed max-compo-
nent log-likelihood L̂σ from eq. (10). At the same time, we enforce the constraints
on the component weights and covariances as described in section 2.1 and tran-
sition from L̂σ into L̂ by annealing (see section 2.4). SGD requires a learning
rate ε to be set, which in turn determines the parameter α (see section 2.4) as
α= ε since stationarity detection should operate on a time scale similar to that
of SGD. The diagonal matrices Dk are initialized to DmaxI and are clipped af-
ter each iteration so that diagonal entries remain in the range [0, D2

max]. This is
necessary to avoid excessive growth of precisions for data entries with vanishing
variance, e.g., pixels that are always black. Weights are uniformly initialized to
πi = 1

K , centroids in the range [−µi,+µi] (see algorithm 1 for a summary). Please
note that our SGD approach requires no centroid initialization by k-means, as it is
recommended when training GMMs with (s)EM. We discuss and summarize good
practices for choosing hyper-parameters in section 5.

2.6 Proof that Annealing is Convergent

We assume that, for a fixed value of σ, SGD optimization has reached a stationary
point where the derivative w.r.t. all GMM parameters is 0 on average. In this
situation, we claim that decreasing σ will always increase the loss. If true, this
would show that σ defines an effective upper bound for the loss. For this to be
consistent, we have to show that the loss gradient w.r.t. σ vanishes as σ→ 0: as
the annealed loss approaches the original one, decreases of σ have less and less
effects.
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Algorithm 1: Steps of SGD-GMM training.

Data: initializer values: µi, K, ε0/ε∞, σ0/σ∞, δ and data X
Result: trained GMM model
1 µ ← U(−µi,+µi), π ← 1/K, P ← IDmax, σ ← σ0, ε ← ε0
2 forall t < T do // training loop
3 g(t) ← create annealing mask(σ,t) // see section 2.4

4 µ(t) ← ε ∂L̂
σ

∂µ
+µ(t-1), // SGD updates

5 P (t) ← ε ∂L̂
σ

∂P
+P (t-1),

6 π(t) ← ε ∂L̂
σ

∂π
+π(t-1)

7 P (t) ← precisions clipping(P , Dmax) //see section 2.5
8 π(t) ← normalization(π(t)) //see eq. (7)

9 `(t) ← (1−α)`(t−1)+αL̂σ(x(t)) // sliding likelihood
10 if annealing update iteration then // see section 2.4
11 if ∆ < δ then // ∆ see eq. (11)
12 σ(t) ← 0.9σ(t−1), ε(t) ← 0.9ε(t−1)

Proposition The gradient ∂L̂σ
∂σ is strictly positive for σ>0

Proof For each sample, the 2D profile of log(πkNk)≡ fk is assumed to be centered
on the best-matching component k∗ and depends on the distance from it as a
function of ||k − k∗||. We thus have fk = fk(r) with r≡ ||k − k∗||. Passing to the
continuous domain, the indices in the Gaussian “smoothing filter” gk∗k become
continuous variables, and we have gk∗k → g(||k − k∗||, σ) ≡ g(r, σ). Similarly,
fk(r)→f(r). Using 2D polar coordinates, the smoothed max-component likelihood
L̂σ becomes a polar integral around the position of the best-matching component:
L̂σ ∼

∫
R2 g(r, σ)f(r)drdφ. It is trivial to show that for the special case of a constant

log-probability profile, i.e., f(r) =L, Lσ, does not depend on σ because Gaussians
are normalized, and that the derivative w.r.t. σ vanishes:

dL̂σ

dσ
∼
∫ ∞
0

dr
( r2
σ2
−1
)

exp
(
− r2

2σ2

)
L

=L

∫ σ

0

dr
( r2
σ2
−1
)

exp
(
− r2

2σ2

)
−L
∫ ∞
σ

( r2
σ2
−1
)

exp
(
− r2

2σ2

)
≡LN−LP

(12)

where we have split the integral into parts where the derivative w.r.t. σ is negative
(N ) and positive (P). We know that N = P since the derivative must be zero for
a constant function f(r) = L due to the fact that Gaussians are normalized to the
same value regardless of σ.

For a function f(r) that satisfies f(r)>L∀r ∈ [0, σ[ and f(r)<L∀r ∈]σ,∞[,
the inner and outer parts of the integral behave as follows:

Ñ =

∫ σ

0

g(r)
( r2
σ2
−1
)
f(r)<

∫ σ

0

g(r)
( r2
σ2
−1
)
L=LN

P̃=

∫ ∞
σ

g(r)
( r2
σ2
−1
)
f(r)<

∫ ∞
σ

g(r)
( r2
σ2
−1
)
L=LP

(13)

since f(r) is minorized/majorized by L by assumption, and the contributions in
both integrals have the same sign for the whole domain of integration. Thus, it is
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shown that
dL̂σ

dσ
= Ñ − P̃ < LN − LP = 0 (14)

for σ> 0 and, furthermore, that this derivative is zero for σ= 0 because L̂σ no
longer depends on σ for this case.

Taking everything into consideration, in a situation where the log-likelihood L̂σ
has reached a stationary point for a given value of σ, we have shown that:

– the value of L̂σ depends on σ,
– without changing the log-probabilities, we can increase L̂σ by reducing σ, as-

suming that the log-probabilities are mildly decreasing around the BMU,
– increasing L̂σ works as long as σ> 0. At σ=0 the derivative becomes 0.

Thus, σ indeed defines an upper bound to L̂σ which can be increased by decreasing
σ. The assumption of log-probabilities that decrease, on average, around the BMU
is reasonable, since such a profile maximizes L̂σ. All functions f(r) that, e.g.,
decrease monotonically around the BMU, fulfill this criterion, whereas the form of
the decrease is irrelevant.

2.7 Training Procedure for sEM

We use sEM proposed by [?] as a reference point to which we compare our
SGD approach. We choose the step size of the form ρt = ρ0(t + 1)−0.5+α, with
α∈ [0, 0.5], ρ0< 1 and enforce ρ(t)≥ ρ∞. Values for these parameters are deter-
mined via a grid search in the ranges ρ0 ∈{0.01, 0.05, 0.1}, α∈{0.01, 0.25, 0.5} and
ρ∞ ∈{0.01, 0.001, 0.0001}. Each sEM iteration uses a batch size B. Initial accumu-
lation of sufficient statics is conducted for 10% of an epoch. Parameter initialization
and clipping of precisions is performed just as for SGD, see section 2.5.

2.8 Comparing SGD and sEM

Since sEM optimizes the log-likelihood L, whereas SGD optimizes the annealed
approximation L̂σ, the comparison of these measures should be considered care-
fully. We claim that the comparison is fair assuming that i) SGD annealing has
converged and ii) GMM responsibilities are sharply peaked so that a single com-
ponent has a responsibility of ≈ 1. It follows from i) that L̂σ ≈L̂ and ii) implies
that L̂≈L. Condition ii) is usually satisfied to high precision especially for high-
dimensional inputs: if it is not, the comparison is biased in favor of sEM, since
L> L̂ by definition.

3 Experiments

Unless stated otherwise, the experiments in this section will be conducted with the
following parameter values for sEM and SGD (where applicable): mini-batch size
B= 1, K = 8× 8, µi = 0.1, σ0 = 2, σ∞= 0.01, ε= 0.001, Dmax = 20. Each experi-
ment is repeated 10 times with identical parameters but different random seeds
for parameter initialization. See section 5 for a justification of these choices. Due
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to input dimensionality, all precision matrices are assumed to be diagonal. The
training/test data comes from the datasets shown below (see section 3.1).

3.1 Datasets

We use a variety of different image-based datasets, as well as a non-image dataset
for evaluation purposes. All datasets are normalized to the [0, 1] range.
MNIST [?] contains gray-scale images, which depict handwritten digits from 0
to 9 in a resolution of 28×28 pixels – the common benchmark for computer vision
systems and classification problems.
SVHN [?] contains color images of house numbers (0-9, resolution 32× 32).
FashionMNIST [?] contains grayscale images of 10 clothing categories and is
considered as a more challenging classification task compared to MNIST.
Fruits 360 [?] consists of color pictures (100× 100× 3 pixels) showing different
types of fruits. The ten best-represented classes are selected.
Devanagari [?] includes grayscale images of handwritten Devanagari letters with
a resolution of 32×32 pixels – the first 10 classes are selected.
NotMNIST [?] is a grayscale image dataset (resolution 28× 28 pixels) of letters
from A to J extracted from different publicly available fonts.
ISOLET [?] is a non-image dataset containing 7 797 samples of spoken letters
recorded from 150 subjects. Each sample is encoded and is represented by 617
float values.

3.2 Robustness of SGD to Initial Conditions

Here, we train GMM for three epochs on classes 1 to 9 for each dataset. We
use different random and non-random initializations of the centroids and compare
the final log-likelihood values. Random centroid initializations are parameterized
by µi ∈{0.1, 0.3, 0.5}, whereas non-random initializations are defined by centroids
from a previous training run on class 0 (one epoch). The latter is done to have a
non-random centroid initialization that is as dissimilar as possible from the training
data. The initialization of the precisions cannot be varied, because empirical data
shows that training converges to undesirable solutions if the precisions are not
initialized to large values. While this will have to be investigated further, we find
that convergence to near-identical levels, regardless of centroid initialization for
all datasets (see section 3.3 for more details).

3.3 Added Value of Annealing

To demonstrate the beneficial effects of annealing, we perform experiments on all
datasets with annealing turned off. This is achieved by setting σ0 = σ∞. This in-
variably produces sparse-component solutions with strongly inferior log-likelihoods
after training, please refer to section 3.3.
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Table 1 Effect of different random and non-random centroid initializations of SGD train-
ing. Given are the means and standard deviations of final log-likelihoods (10 repetitions per
experiment). To show the added value of annealing, the right-most column indicates the final
log-likelihoods when annealing is turned off. This value should be compared to the leftmost
entry in each row where annealing is turned on. Standard deviations in this case where very
small so they are omitted.

Dataset

Initialization random non-random no annealing

µi=0.1 µi=0.3 µi=0.5 init class 0 µi = 0.1
mean std mean std mean std mean std mean

MNIST 205.47 1.08 205.46 0.77 205.68 0.78 205.37 0.68 124.1
FashionMNIST 231.22 1.53 231.58 2.84 231.00 1.11 229.59 0.59 183.0
NotMNIST −48.41 1.77 −48.59 1.56 −48.32 1.13 −49.37 2.32 -203.8
Devanagari −15.95 1.59 −15.76 1.34 −17.01 1.11 −22.07 4.59 -263.4
Fruits 360 12 095.80 98.02 12 000.70 127.00 12 036.25 122.06 10 912.79 1727.61 331.2
SVHN 1328.06 0.94 1327.99 1.59 1328.40 1.17 1327.80 0.94 863.2
ISOLET 354.34 0.04 354.36 0.04 354.36 0.04 354.20 0.05 201.5

3.4 Clustering Performance Evaluation

To compare the clustering performance of sEM and GMM the Davies-Bouldin
score [?] and the Dunn index [?] are determined. We evaluate the grid-search
results to find the best parameter setup for each metric for comparison. sEM is
initialized by k-means to show that our approach does not depend on parameter
initialization. Section 3.4 indicaties that SGD can egalize sEM performance.

Table 2 Clustering performance comparison of SGD and sEM training using Davies-Bouldin
score (less is better) and Dunn index (more is better). Each time mean metric value (of 10
experiment repetitions) at the end of training, and their standard deviations are presented.
Results are in bold face whenever they are better by more than half a standard deviation.

Dataset

Metric
Algo.

Davies-Bouldin score Dunn index
SGD sEM SGD sEM

mean std mean std mean std mean std

MNIST 2.50 0.04 2.47 0.04 0.18 0.02 0.16 0.02
FashionMNIST 2.06 0.05 2.20 0.04 0.20 0.03 0.19 0.02
NotMNIST 2.30 0.03 2.12 0.03 0.15 0.03 0.14 0.04
Devanagari 2.60 0.04 2.64 0.02 0.33 0.01 0.27 0.04
SVHN 2.34 0.04 2.41 0.03 0.15 0.02 0.15 0.02

3.5 Streaming Experiments with Constant Statistics

We train GMMs for three epochs (enough for convergence in all cases) using SGD
and sEM on all datasets as described in sections 2.5 and 2.7. The resulting centroids
of our SGD-based approach are shown in fig. 3, whereas the final loss values for
SGD and sEM are compared in section 3.5. The centroids for both approaches
are visually similar, except for the topological organization due to annealing for
SGD, and the fact that in most experiments, some components do not converge
for sEM while the others do. Section 3.5 indicates that SGD achieves performances
superior to sEM in the majority of cases, in particular for the highest-dimensional
datasets (SVHN: 3072 and Fruits 360: 30 000 dimensions).
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Table 3 Comparison of SGD and sEM training on all datasets in a streaming-data scenario.
Shown are log-likelihoods at the end of training, averaged over 10 repetitions, along with their
standard deviations. Results are in bold face whenever they are higher by more than half a
standard deviation. Additionally, the averaged maximum responsibilities (pk∗ ) for test data
are given for justifying the max-component approximation.

Dataset
Algorithm SGD sEM

∅max pk∗ mean std mean std

MNIST 0.992 674 216.6 0.31 216.8 1.38
FashionMNIST 0.997 609 234.5 2.28 222.9 6.03
NotMNIST 0.998 713 −34.7 1.16 −40.0 8.90
Devanagari 0.999 253 −14.6 1.09 −13.4 6.16
Fruits 360 0.999 746 11754.3 75.63 5483.0 1201.60
SVHN 0.998 148 1329.8 0.80 1176.0 16.91
ISOLET 0.994 069 354.2 0.01 354.5 0.37

(a) MNIST (b) SVHN (c) FashionMNIST

(d) Devanagari (e) NotMNIST (f) Fruits 360

Fig. 3 Exemplary results for centroids learned by SGD.

Visualization of High-dimensional sEM Outcomes Section 3.5 was obtained after
training GMMs by sEM on both the Fruits 360 and the SVHN dataset. It should be
compared to fig. 3, where an identical procedure was used to visualize centroids of
SGD-trained GMMs. It is notable that the effect of unconverged components does
not occur at all for our SGD approach, which is due to the annealing mechanism
that “drags” unconverged components along.
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Fig. 4 Visualization of centroids after training runs (3 epochs) on high-dimensional datasets
for sEM: Fruits 360 (left, 30 000 dimensions) and SVHN (right, 3000 dimensions). Compo-
nent entries are displayed “as is”, meaning that low brightness means low RGB values. Many
GMM components remain unconverged, which is analogous to a sparse-component solution
and explains the low log-likelihood values for these high-dimensional datasets.

4 Assumptions made by EM and SGD

The EM algorithm assumes that the observed data samples {xn} depend on un-
observed latent variables zn in a non-trivial fashion, see section 2. The derivation
of the EM algorithm starts out with the total incomplete-data log-likelihood

L = log p(X) = log
∏
n

p(xn) =
∑
n

log p(xn)

=
∑
n

log
∑
k

p(xn, zn = k)

=
∑
n

log
∑
k

p(zn = k)
p(xn, zn = k)

p(zn = k)
.

(15)

Due to the assumption that L is obtained by marginalizing out the latent variables,
an explicit dependency on zn can be re-introduced. For the last expression, Jensen’
inequality can be used to construct a lower bound:

L ∼
∑
n

log
∑
k

p(zn = k)
p(xn, zn = k)

p(zn = k)

≥
∑
n

∑
k

p(zn = k) log
p(xn, zn = k)

p(zn = k)
.

(16)

Since the realizations of the latent variables are unknown, we can assume any
form for their distribution. In particular, for the choice p(zn) ∼ p(xn, zn), the
lower bound becomes tight. Simple algebra and the fact that the distribution
p(zn) must be normalized gives us:

p(zn = k) =
p(zn = k,xn)

p(xn)

= p(zn = k|xn)

=
p(zn = k,xn)∑
l p(zn = l,xn)

=
πkNk(xn)∑
l πlNl(xn)

(17)
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where we have used eq. (15) in the last step. p(zn= k|xn) is a quantity that can
be computed from data with no reference to the latent variables. For GMM it is
usually termed responsibility and we write it as p(zn=k|xn)≡γnk.

However, the construction of a tight lower bound, which is actually different
from L, only works when p(xn, zn) depends non-trivially on the latent variable
zn. If this is not the case, we have p(xn, zn) =K−1p(xn) and the derivation of
eq. (17) goes down very differently:

L ∼
∑
n

log p(xn) ≥
∑
n

∑
k

p(zn = k) log
p(xn, zn = k)

p(zn = k)

=
∑
n

∑
k

p(zn = k) log
K−1p(xn)

p(zn = k)

=
∑
n

log
(
K−1p(xn)

)
−
∑
k

p(zn = k) log p(zn = k)

≡
∑
n

(
log p(xn)−

(
logK −H[zn]

))
(18)

where H represents the Shannon entropy of p(z). The highest value this can have
is logK for an uniform distribution of the zn, finally leading to a lower bound for
L of

L ≥
∑
n

(
log p(xn)

)
(19)

which is trivial by Jensen’s inequality, but not tight. In particular, no closed-form
solutions to the associated extremal value problem can be computed.

This shows that optimizing GMM by EM assumes that each sample has been
drawn from a single element in a set of K uni-modal Gaussian distributions. Which
distribution is selected for sampling depends on a latent random variable. On the
other hand, optimization by SGD uses the incomplete-data log-likelihood L as
basis for optimization, without assuming the existence of hidden variables at all.
This may be advantageous for problems where the assumption of Gaussianity is
badly violated, although empirical studies indicate that optimization by EM works
very well in a very wide range of scenarios.

5 Discussion and Conclusion

The relevance of this article is outlined by the fact that training GMMs by
SGD was recently investigated in the community by [?,?]. We go beyond, since
our approach does not rely on off-line data-driven model initialization, and works
for high-dimensional streaming data. The presented SGD scheme is simple and
very robust to initial conditions due to the proposed annealing procedure, see sec-
tion 3.2 and section 3.3. In addition, our SGD approach compares favorably to the
reference model for online EM [?] in terms of achieved log-likelihoods, which was
verified on multiple real-world datasets. Superior SGD performance is observed
for the high-dimensional datasets.

Analysis of results suggests that SGD performs better than sEM on average, see
section 3.5, although the differences are very modest. It should be stated clearly
that it cannot be expected, and is not the goal of this article, to outperform sEM
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by SGD in the general case, only to achieve a similar performance. However, if
sEM is used without, e.g., k-means initialization, components may not converge
(see section 3.5) for very high-dimensional data like Fruits 360 and SVHN datasets,
which is why SGD outperforms sEM in this case. Another important advantage of
SGD over sEM is the fact that the only parameter that needs to be tuned is the
learning rate ε, whereas sEM has a complex and not intuitive dependency on ρ0,
ρ∞ and α0.

Small batch sizes and streaming data are possible with the SGD-based ap-
proach. Throughout the experiments, we used a batch size of 1, which allows
streaming-data processing without the need to store any samples at all. Larger
batch sizes are possible and strongly increase execution speed. In the conducted
experiments, SGD (and sEM) usually converged within the first two epochs, which
is a substantial advantage whenever huge sets of data have to be processed.

Low-dimensional data can be treated with our SGD-based approach, either
using the max-component approximation of eq. (8) or the full incomplete-data
log-likelihood. For low-dimensional data, numerical issues and undesirable local
minima are less relevant, so there really is no point using the max-component ap-
proximation together with annealing here. Extensive experiments with synthetic
data drawn from various Gaussian mixture distributions show that this is never-
theless possible, with parameters identical to the experiments inn section 3, if the
initialization range of the centroids, µi, is chosen to coincide with the ranges of
the individual data components. This ensures that initial centroids cover the data
space sufficiently so that each cluster in the data has at least one centroid near to
it.

No assumptions about data generation are made by SGD in contrast to the
EM and sEM algorithms. The latter guarantees that the loss will not decrease
due to an M-step. This, however, assumes a non-trivial dependency of the data on
an unobservable latent variable (shown in section 4). In contrast, SGD makes no
hard-to-verify assumptions, which is a rather philosophical point, but may be an
advantage in certain situations where data are strongly non-Gaussian.

Numerical stability is assured by our SGD training approach. It does not op-
timize the log-likelihood but its max-component approximation. This approxima-
tion contains no exponentials at all, and is well justified by the results of sec-
tion 3.5 which shows that component probabilities are strongly peaked. In fact, it
is the gradient computations where numerical problems occurred, e.g., NaN val-
ues. The “logsumexp” trick mitigates the problem, but does not eliminate it (see
section 2.2). It cannot be used when gradients are computed automatically, which
is what most machine learning frameworks do.

Hyper-Parameter selection guidelines are as follows: the learning rate ε must
be set by cross-validation (a good value is 0.001). We empirically found that ini-
tializing precisions to the cut-off value Dmax and an uniform initialization of the
πi are beneficial, and that centroids are best initialized to small random values. A
value of Dmax = 20 always worked in our experiments. Generally, the cut-off must
be much larger than the inverse of the data variance. In many cases, it should
be possible to estimate this roughly, even in streaming settings, especially when
samples are normalized. For density estimation, choosing higher values for K leads
to higher final log-likelihoods. For clustering, K should be selected using standard
techniques for GMMs. The parameter δ controls loss stationarity detection for the
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annealing procedure and was shown to perform well for δ= 0.05. Larger values will
lead to a faster decrease of σ(t), which may impair convergence. Smaller values
are always admissible but lead to longer convergence times. The annealing time
constant α should be set to the GMM learning rate ε or lower. Smaller values of α
lead to longer convergence times since σ(t) will be updated less often. The initial
value σ0 needs to be large in order to enforce convergence for all components. A
typical value is

√
K. The lower bound on σ∞ should be as small as possible in

order to achieve high log-likelihoods (e.g., 0.01, see section 2.6 for a proof).

6 Future Work

The presented work can be extended in several ways: First of all, annealing control
could be simplified further by inferring good δ values from α. Likewise, increases
of σ might be performed automatically when the loss rises sharply, indicating a
task boundary. As we found that GMM convergence times grow linear with the
number of components, we will investigate hierarchical GMM models that operate
like a Convolutional Neural Network (CNN), in which individual GMM only see
a local patch of the input and can therefore have low K.
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