
An empirical comparison of generators in
replay-based continual learning

Nadzeya Dzemidovich1 and Alexander Gepperth1

1- University of Applied Sciences Fulda - Applied Computer Science
Leipzigerstr. 123, 36037 Fulda - Germany

Abstract. This study is in the context of continual learning (CL) with
DNNs. It compares several types of generators when performing replay,
i.e., the generation of previously seen samples, to avoid catastrophic for-
getting. Principal generators are generative adversarial networks (GANs)
and variational autoencoders (VAEs). We evaluate these generators in
various flavors (conditional, Wasserstein etc.) w.r.t. CL performance on
a variety of CL tasks generated from the MNIST benchmark. Concern-
ing generators, we find that VAEs are generally more compatible with CL
than GANs. More generally, we find that replay-based CL faces counter-
intuitive issues for seemingly simple problems: first, that performance de-
grades more strongly as less information is added, and, furthermore, that
performance degrades even when only known information is added.

1 Introduction

This article is concerned with continual learning (CL), a branch of machine
learning that investigates learning from non-stationary data distributions. A
particular type of CL problem is supervised learning, where disjoint groups of
classes (termed sub-tasks) are presented to the model in a sequential manner.
Within each sub-task, a stationary data distribution is assumed. This setting is
summarized in fig. 1. A large number of proposals have been suggested in recent
years to address CL in this (or related) scenarios, see [1–3] for comprehensive
overviews. A very promising line of research seems to be represented by so-called
generative replay methods, see [4]. A scholar consists of a solver (classifier) and
a generator, which has the task of producing samples that are similar to samples
seen in past sub-tasks T < T0 prior to training on sub-task T0. These generated

Task N Scholar N

Task 3 Scholar 3

Task 2 Scholar 2

Task 1 Scholar 1

New Scholar

Old Scholar

x’Replay

Generator

Solver

Generator Solver

Input Target

Current task

xCurrent

y’

y

New Scholar

Old Scholar

x’Replay

Generator

Solver

Generator Solver

Input Target

Current task

xCurrent

Fig. 1: Generative replay ina na nutshell. For each new sub-task, a new scholar
(consisting of a DNN generator and a DNN solver) is trained based on data from
the new sub-task, merged with data produced by the generator.

samples are then merged with samples from sub-task T0 to form the training
set for both generator and solver. At the end of sub-task T0, a generator and
solver together are capable of classifying and generating samples coming from all
sub-tasks T ≤ T0, including T0. Generative replay models can use several types
of generators, such as variational autoencoders (VAEs) or generative adversarial
networks (GANs) in all their flavors. Even the use of Gaussian Mixture Models
(GMMs) has been described in [5]. In this article, we perform a systematic
analysis of replay-based CL using Variational Autoencoders (VAEs), Generative
Adversarial Networks (GANs) and Wasserstein GANS.

1.1 Motivation and findings

This investigation is motivated by the enormous freedom that exists in the choice
of the generators, and the general complexity of replay-based learning. More
to the point, we would like to derive clear guidelines as to which generators
are generally preferable, or preferable in certain well-defined situations. More
generally, we would like to determine whether replay-based CL has any generic
weak points that need to be taken care of for real-world applications. Our
principal findings and contributions to the CL community, in the simplified case
of two sub-tasks only, can be summarized as follows: first of all, without prior
access to the data to tune GAN-based generators, VAEs are a better choice as
they avoid mode collapse under resource constraints. This problem is alleviated
somewhat by Wasserstein-based GANs, but at enormous computational cost.
Furthermore, CL performance degrades even if only known classes are added
in the second sub-task. Finally, we find that CL performance degrades as the
second sub-task becomes smaller. This is counter-intuitive since the problem is
supposed to be simpler.

1.2 Related work

Generative replay (or: pseudo-rehearsal) for CL has been the subject of numer-
ous articles, see, e.g., [1, 6–8] for reviews or [9] for the original article. Bench-
marks of replay approaches are performed in, e.g., [10] or [5]. However, very
few articles actually deal with the question of generators for replay-based CL.
In [11], several generators are compared, but more w.r.t. their ability to gener-
ate samples in a conditional fashion, and procedures for replay with conditional
generators are proposed. The quality evaluation of generators is a difficult sub-
ject in general, see [12]. Gaussian Mixture Models have been used as generators
in replay-based learning and compared to more conventional ones in [5]. Issues
of mode collapse in GANs have long been observed, e.g., in [13]. On the whole,
we believe that the issue of which generators are best suited for replay-based CL
has not yet been exhaustively covered by related work.

EXP 1 2 3 4 5 6 7 8
T1 0-4 0-8 0 4 3 4 0-9 0-9 0-9
T2 5-9 9 1 9 8 9 1 1 1
T3 - - - - - - 1 1
T4 - - - - - - - 1

Table 1: Conducted experiments with sub-task partitions . All experiments can
be conducted with generators based on VAE, GAN or Wasserstein-GAN.

2 Methods and implementation

2.1 Dataset

For our experiments, we use the MNIST dataset, a common benchmark for visual
classification problems. It consists of 70,000 greyscale images of handwritten
digits (from zero to nine) of size 28x28, containing 55,000 training and 10,000
test samples that are approximately equally distributed over ten classes. While
MNIST may be considered too simple as an outright classification problem, it was
recently proven [3] that many CL approaches fail on simple two-task sequential
learning tasks constructed from MNIST, so MNIST does constitute an adequate
benchmark in a CL context.

2.2 Evaluation

We evaluate CL experiments by classification accuracy and by histogram plots of
the generated class distributions. Classification accuracies are computed after all
sub-tasks have been processed, and are evaluated on data from individual sub-
tasks (e.g., T1, T2) or on the whole dataset (termed TAll). All evaluations are
averaged over several experimental runs (repetitions with same hyper-parameters
to exclude spurious results).

2.3 Experimental procedure

For every method and experiment listed in table 1, we perform 10 runs, produce
the appropriate metrics (see section 2.2) and average them over all runs. Prior to
a run, each DNN is independently and randomly initialized. Hyper-parameters
of the training procedure are set as follows: solvers are trained for 10 (sub-
task) epochs, whereas generators are trained for 50 epochs. The batch size is
universally set to 100, the learning rate for solvers, GANs and VAEs to εS =
10−4, εV AE = εGAN = 10−3. We use a VAE latent dimension of 25 and a
disentangling factor β = 1., whereas a noise dimension of 75 is used for GANs.
Class-conditional generation for VAE is disabled unless specifically stated. The
ratio between replayed and new data is set according to the ratio of samples
from previous and current sub-task classes (balanced for EXP1, EXP3, EXP4,
EXP5 and 9:1 for EXP2). The structure of all used DNNs is given in table 2.

Table 2: DNN structure for solvers and generators.
Method/DNN Structure

VAE: Generator Conv2D(32,5,2)-ReLU-Conv2D(64,5,2)-ReLU-Dense(100)-
ReLU-Dense(25)-ReLU-Dense(50)

VAE: Solver Dense(100)-ReLU-Dense(3136)-ReLU-Conv2DTranspose(32,5,2)-
RelU-Conv2DTranspose(1,5,2)-Sigmoid

GAN: Generator Dense(1024)-BatchNorm-LeakyReLU(0.2)-Dense(6272)-BatchNorm-LeakyReLU(0.2)-
Conv2DTranspose(64,4,2)-BatchNorm-LeakyReLU(0.2)-Conv2DTranspose(1,4,2)-Sigmoid

GAN: Solver Conv2D(64,4,2)-BatchNorm-ReLU-LeakyReLU(0.2)-Dropout(0.3)-
Conv2D(128,3,2)-BatchNorm-ReLU-LeakyReLU(0.2)-Dropout(0.3)-Flatten-Dense(1024)-

BatchNorm-ReLU-LeakyReLU(0.2)-Dropout(0.3)-Dense(1)-Sigmoid
WGAN: Generator Dense(4096)-BatchNorm-LeakyReLU(0.2)-UpSampling2D(2)-

Conv2D(128,3,1)-BatchNorm-LeakyReLU(0.2)-UpSampling2D(2)-Conv2D(64,3,1)-BatchNorm-
LeakyReLU(0.2)-UpSampling2D(2)-Conv2D(1,3,1)-BatchNorm-Tanh-Cropping2D(2)

WGAN: Solver ZeroPadding2D-Conv2D(64,5,2)-LeakyReLU(0.2)-Conv2D(128,5,2)-
LeakyReLU(0.2)-Dropout(0.3)-Conv2D(256,5,2)-LeakyReLU(0.2)-Dropout(0.3)-

Conv2D(512,5,2)-LeakyReLU(0.2)-Flatten-Dropout(0.2)-Dense(1)

ID T1 T2 TAll T1 T2 TAll T1 T2 TAll
VAE GAN W-GAN

1 93.5 97.3 95.3 36.7 97.9 66.5 89.8 97.9 93.7
2 92.8 97.7 93.3 0 100 10.1 65.7 99.7 69.2
3 100.0 99.9 100.0 99.6 100 99.1 100 100 100
4 96.2 98.7 97.2 69.6 69.6 84.7 43.1 100 72.7
5 90.9 98.3 94.5 42.6 99.3 70.9 92.4 98.4 95.4

Table 3: CL accuracies averaged over 10 runs for EXP1-5 computed when using
VAEs, GANs and Wasserstein-GANs as generators. Accuracies on sub-tasks are
computed after the last sub-task is completed.

3 Experiments

Default values of the parameters are presented in section 2.3. All experiments
are run on identical hardware. For all experiments, accuracy measurements are
obtained after the execution of the last sub-task.

3.1 Two-subtask experiments

Initially, we focus on EXP1-EXP5, see table 1. Table 3 shows average accuracy
values over ten runs, evaluated as detailed in section 2.2. As can be observed,
VAE shows best performance for almost every experiment, whereas GAN shows
the weakest results. We hypothesize that GAN results can be explained by
mode collapse, i.e., the structure of the GAN is insufficient to represent the
full probability distribution. The Wasserstein modification strongly improves
GAN results. For EXP3, we hypothesize that it can be solved by virtually all
methods since the involved classes are very dissimilar. Finally, EXP4 showed
the worst result across all generators, which is curious but presumably due to
the fact that the two classes involved are very similar. During evaluation of
EXP1-EXP5, one can observe that some generators do not provide balanced
class distributions between classes from the first sub-task, see fig. 2. For GANs,
we interpret this as the occurrence of mode collapse, which is remedied by using
the Wasserstein approach. Nevertheless, during some experiments using the
Wasserstein approach, samples are still unbalanced, and for such cases, accuracy

0 1 2 3 4

104

x10

5

0 1 2 3 4

3

0 1 2 3 4

10
4

0 1 2 3 40 1 2 3 4

x10

5

3

Fig. 2: Class distributions: VAE(left), GAN (middle) and W-GAN (right).

Fig. 3: Samples of class ”3”: VAE(left), GAN(middle) and W-GAN(right).

suffers, see EXP2 in table 3. Thus it can be stated that Wasserstein-GANs do
not guarantee a perfectly balanced distribution of the generated samples, while
increasing training time by a factor of at least 5. Typical samples produced by
different generators during EXP1 are shown in fig. 3, showing a clear edge for
VAEs. As is usual with VAEs, samples look less ”sharp” than GAN-generated
ones, but this does not seem to impair CL performance.

3.2 Multiple sub-tasks and generic aspects of CL

Experiments EXP6-EXP8 investigate whether the (possibly repeated) addition
of an already known class has an effect on replay-based CL performance. As
generators, we use Wasserstein-GANs, conditional VAEs (CVAEs) and vanilla
VAEs which showed promising performance in the previous set of experiments.
Table 4 shows results for EXP6-8. We observe that, in general, T1 performance
drops more strongly as the number of sub-tasks increases, although only known
information is added.

4 Conclusions

Since the key findings were stated in section 1.1, we focus on an interpretation of
the obtained results here. We expect these findings to hold whenever we cannot
tune generators to a a specific CL problem by cross-validation on the whole
dataset (e.g., MNIST), as this would require knowledge of data from sub-tasks
that lie in the future. If these were generally available, the need for dedicated CL
methods would literally vanish. We modeled this case here by choosing a fixed

Sub-Task VAE CVAE W-GAN
EXP 6 7 8 6 7 8 6 7 8
T1 94.6 85.6 80.8 94.6 85.6 80.8 93.1 87.9 77.1
T2 99.5 99.3 99.5 99.5 99.3 99.5 99.6 99.6 99.9
T3 - 99.4 99.5 - 99.4 99.5 - 99.6 99.9
T4 - - 99.5 - - 99.5 - - 99.9

TAll 94.6 85.6 80.8 93.6 86.6 83.8 93.1 87.9 77.1

Table 4: CL accuracies averaged over 10 runs for EXP6-8 computed when using
VAEs, CVAEs and Wasserstein-GANs as generators. Accuracies on sub-tasks
are computed after the last sub-task is completed.

architecture for the generators, which is however powerful enough to generate
MNIST data when trained on the whole dataset.

From the result that performance degrades even if new sub-tasks consist
exclusively of known samples, we conclude that generative replay needs to be
complemented by generative outlier detection method that can detect known (an
unknown) data automatically. In this way, training could be conducted selec-
tively on unknown data only, thus minimizing the damage to existing knowledge
by re-training.

References
[1] German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual lifelong

learning with neural networks: A review. Neural Networks, 113:54–71, 2019.

[2] Ronald Kemker, Marc McClure, Angelina Abitino, Tyler Hayes, and Christopher Kanan. Measuring catastrophic
forgetting in neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[3] Benedikt Pfülb and Alexander Gepperth. A comprehensive, application-oriented study of catastrophic forgetting
in DNNs. In International Conference on Learning Representations (ICLR), 2019.

[4] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative replay. In
Advances in Neural Information Processing Systems, pages 2990–2999, 2017.

[5] B Pfülb and A Gepperth. Overcoming catastrophic forgetting with Gaussian mixture replay. In International
Joint Conference on Neural Networks(IJCNN), 2021.

[6] Yifan Chang, Wenbo Li, Jian Peng, Bo Tang, Yu Kang, Yinjie Lei, Yuanmiao Gui, Qing Zhu, Yu Liu, and
Haifeng Li. Reviewing continual learning from the perspective of human-level intelligence. arXiv preprint
arXiv:2111.11964, 2021.

[7] Khadija Shaheen, Muhammad Abdullah Hanif, Osman Hasan, and Muhammad Shafique. Continual learning
for real-world autonomous systems: Algorithms, challenges and frameworks. arXiv preprint arXiv:p2105.12374.

[8] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory Slabaugh,
and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification tasks. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 44(7):3366–3385, 2021.

[9] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative replay. In
Advances in Neural Information Processing Systems, 2017.

[10] Benedikt Bagus and Alexander Gepperth. An investigation of replay-based approaches for continual learning.
In International Joint Conference on Neural Networks (IJCNN), 2021.

[11] Timothée Lesort, Hugo Caselles-Dupré, Michael Garcia-Ortiz, Andrei Stoian, and David Filliat. Generative
models from the perspective of continual learning, 2019.

[12] Timothée Lesort, Andrei Stoian, Jean François Goudou, and David Filliat. Training discriminative models to
evaluate generative ones. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 11729 LNCS:604–619, 2019.

[13] David Bau, Jun-Yan Zhu, Jonas Wulff, William Peebles, Hendrik Strobelt, Bolei Zhou, and Antonio Torralba.
Seeing what a GAN cannot generate. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 4502–4511, 2019.

