
Generalizing self-organizing maps: large-scale

training of GMMs and applications in data

science

Alexander Gepperth1[0000−0003−2216−7808]

Fulda University of Applied Sciences, Leipzigerstr. 123, 36037 Fulda, Germany
alexander.gepperth@cs.hs-fulda.de

www.gepperth.net/alexander

Abstract. This contribution shows that Gaussian Mixture Models can
be considered generalizations of self-organizing maps. More precisely, we
demonstrate that the training of self-organizing maps is an approxima-
tion to the training of Gaussian Mixture Models by gradient descent.
As a consequence, the scores of a trained SOM can be treated as log-
likelihoods of a GMM with tied, spherical covariance and used, e.g.,
for outlier detection, whereas sampling from trained SOMs is not well-
de�ned. Furthermore, we outline how SGD-trained GMMs can be gen-
eralized to diagonal and more expressive covariance matrices and how
this bene�ts typical data science applications such as outlier detection,
sampling and generative classi�cation.

Keywords: Self-Organizing Maps · Gaussian Mixture Models · Stochas-
tic Gradient Descent

1 Introduction

The self-organizing map (SOM) model [5] has widely been used in data visu-
alization and data exploration, and has been very in�uential in general. SOM
training is however complicated by the fact that there is no loss function that
is minimized by SOM training, and that the decay of the neighbourhood radius
over time is tricky to tune. In addition, is it theoretically unclear how SOM
scores, i.e., input-prototype distances, can be interpreted although they have
been used for outlier detection on an ad-hoc basis.

This article proposes the Gaussian Mixture Model (GMM) as a "generalized
self-organizing map", i.e., a probabilistic model that reduces to SOM in a suitable
approximation. By virtue of this approximation, one can harness the bene�cial
properties of SOMs while at the same time providing SOM with a clear proba-
bilistic interpretation, leading to applications in outlier detection and sampling
with SOM-like models.

1.1 Related work

SOMs and GMMs have multiple common points, the most notable being that
they are based on distances rather than scalar products as DNNs are, which is

2 A. Gepperth

why some authors include them in the group of prototype-based models. There are
a few works that try to link the GMM and SOM models in the past. Notably, in
[3], the authors propose a modi�ed SOMmodel that is based on the minimization
of a di�erentiable loss. This was new at the time, since it had been shown that
the SOM learning rule cannot be derived from the minimization of any single
di�erentiable loss function, see [4]. On the other hand, is was demonstrated in [9]
that SOM-like topological visualization behavior can be imposed on GMMs if the
common uniform prior over latent variables is replaced appropriately. However,
gradient-based training of GMMs is not discussed in this article, and neither is
a formal link between SOMs and GMMs. The possibilities of advanced GMMs
such as the MFA model for image modeling were explored in [8], using SGD for
using k-means initialization.

1.2 Contributions

This article makes the following contributions:

� mathematical proof that the SOM learning rule is an approximation to the
training of GMMs by stochastic gradient descent

� provide a probabilistic analysis of SOM's ability to sample and perform out-
lier detection

� demonstrate the capabilities of SGD-trained GMMs as "generalized SOMs"
w.r.t. sampling, outlier detection and generative classi�cation

2 Theoretical contributions

2.1 Relation between GMM and SOM training

Gaussian Mixture Models The GMM model approximates an unknown dis-
tribution, given empirically by data samplesX = {xn}, by expressing that distri-
bution by a weighted superposition of K multivariate Gaussian densities Nk(x)
≡ N (x;µk,Σk): p(X) =

∏
n (

∑
k πkNk(xn)). When passing to log-probabilities,

this transforms to L0 = log p(X) =
∑

n log
∑

k πkNk(xn), which is often termed
the GMM log-likelihood. GMMs are trained by adapting the weights πk, the cen-
troids µk and the covariance matrices Σk such that the negative log-likelihood
is maximized.

GMM optimization by SGD Traditionally, GMMs are trained by the Expecta-
tion-Maximization (EM) algorithm which does not require learning rates and has
good convergence properties. However, since EM is inherently a batch-type al-
gorithm, i.e., it needs to process all samples at once to retain its convergence
properties, it is unfeasible for large-scale training. Furthermore, convergence in
practice is only ensured if centroids are initialized by, e.g., k-means. This is why
recent publications [2] propose to optimize GMMs by SGD from random initial

Title Suppressed Due to Excessive Length 3

conditions. In order for this, two modi�cations need to be made: �rst of all, the
log sum inside the GMM log-likelihood is approximated by its largest term:

L1(X) = L0(X) =
∑
n

log
∑
k

πkNk(xn) ≈
∑
n

logmax
k

πkNk(xn) = (1)

=
∑
n

max
k

log (πkNk(xn))

This is very numerically advantageous as the log removes the exponential inside
the Gaussian density N , but it also makes the gradients much more tractable.
When optimizing this loss by SGD from random initial conditions, we often
encounter degenerate solutions where one component describes all the data, and
the remaining ones remain uninitialized. To remedy this, [2] proposes to add an
annealing mechanism to the loss of eq. (1) which averages components over a
Gaussian neighbourhood, thus obtaining the �nal GMM loss

L2(X) = L1(X) =
∑
n

max
k

log (πkNk(xn)) ≈

≈
∑
n

max
k

[∑
l

gkl(σ) log (πlNl(xn))

]
≡ L (2)

The kernel matrix gij follows a Gaussian pro�le with a time-dependent width
σ(t) ≡ σ: gkl = exp(−0.5d(k, l)2σ−2), with d(i, j) representing the Euclidean
distance between components i and j when placed on a two-dimensional grid.
It is easy to see that gkl → δkl in the limit σ → 0, in which case the annealed
loss L2 reduces to L1. Optimizing a GMM by SGD is therefore performed by
maximizing L2(X) w.r.t µk,Σk, πk while letting σ(t) decay from some initial
value σ0 to 0. This ensures that local optima are avoided by the optimization, as
demonstrated and proven in [2]. An additional reparameterization ensures that
weights are normalized:

∑
k πk = 1.

From GMM to SOM In the GMM model, the covariance matrices Σk can
have any form. Most commonly, they are chosen as spherical (Σk = σkI) or
diagonal matrices (Σk = diag[σk1, σk2, dots])) for simplicity. If we assume that
all covariance matrices have a spherical, tied form of unit variance as Σk = I,
the covariance matrices e�ectively drop out of the GMM loss L2. The Gaussian
component densities Nk thus simplify as

Nk ≡ N (x;µk,Σk) = (2π detΣk)
−0.5 exp(−0.5

(
(x− µk)

TΣ−1
k (x− µk)

)
→
√
2π exp(−0.5||x− µk||2). (3)

4 A. Gepperth

If we furthermore assume that the weights are all tied to K−1, they drop out of
the loss as well, which �nally becomes:

L2 =
∑
n

max
k

[∑
l

gkl(σ) log (πlNl(xn))

]

→
∑
n

max
k

[∑
l

gkl(σ)(−0.5 log(2π)− 0.5||xn − µk||2)

]
=

= −0.5
∑
n

max
k

[∑
l

gkl(σ)(||xn − µk||2)

]
+ const. ≡ L3 (4)

Discarding the constant and the leading factor which are irrelevant for gradient
descent, we arrive at what was termed the "energy function" for the SOM model
proposed by [3]. When optimizing L3 by stochastic gradient descent, we obtain
the update rule

µl ← µk∗ + ϵgk∗l(σ)(µk∗ − x), (5)

which of course has to be accompanied by an appropriate decrease regime for
σ = σ(t). The only di�erence to the conventional online SOM learning rule is
that the best-matching unit (BMU) k∗ is determined here as k∗ = arg maxk[∑

l gkl(σ)(||xn − µk||2)
]
, instead of k∗ = arg maxk||xn − µk||. In the limit of

σ → 0, these two formulations become identical. For all practical purposes, the
modi�ed BMU selection leads to the same results, as shown in [4].

2.2 Analysis of SOM capabilities

With the knowledge that SOMs are a particular limiting case of GMMs, we can
derive the following statements w.r.t. particular SOM capabilities:

SOMs can perform limited outlier detection SOM scores sk ≡ −||vx−µk||2
correspond to GMM log-probabilities, for GMMs with tied weights and spherical
unit covariance, see above. We can therefore compute the posterior probability

that a given sample was produced by a component c as p(x|c) = exp(sc)∑
l exp(sl)

and impose a threshold for the BMU probability. Alternatively, we can apply
an application-derived threshold directly on the SOM scores to detect outliers.
This is of course only possible under the assumption that data clusters do have
approximately unit variance.

SOMs cannot be used for sampling For outlier detection, it is immaterial
whether the unit variances �t the actual data well, since we are just want to rank
SOM's components w.r.t. their degree of match to the data. For sampling, this is
no longer true, since we need the variances to draw samples from a multivariate
Gaussian distribution. By assuming unit variances for all components, all clusters
in sampled data will therefore have unit radius regardless of their actual extent
in data space. Thus, SOMs are not suitable for faithful sampling.

Title Suppressed Due to Excessive Length 5

2.3 Advantages of GMMs w.r.t SOMs

GMMs do not share the limitations of SOMs outlined in section 2.2, and if they
are trained by SGD, they are by construction capable of outlier detection and
sampling. However, they do retain many important SOM properties, while at
the same time �xing a serious issue in SOM training:

Automatic tuning of neighbourhood radius The correct decay regime for
σ(t) is always hard to tune for SOMs because there is no real criterion of SOM
performance (since there is not loss function to be minimized). In contrast, SGD-
trained GMMs provide a loss function and thus a simple criterion for reducing
σ(t): essentially, this should happen whenever the loss is stationary. It can be
shown (see [2]) that σ de�nes a lower bound for the GMM loss L2, so reducing σ
can allow the loss to decrease further. Performing σ → γσ in case of stationary
loss during training provides a viable strategy that does not require manual
tuning at all. The only values to set are σ0 ≡ σ(t = 0) and σ∞, both of which
can be set based on heuristics.

Data visualization property Since the loss L2 rewards con�gurations where
similar centroids lie close together on the two-dimensional lattice, SGD-trained
GMMs that optimize L2 retain the topological SOM property and can thus be
used for data visualization and exploration as a drop-in replacement for SOMs.

Arbitrary covariance matrices One particular feature of GMMs is the free-
dom to choose a particular form for the covariance matrices. In practice, diag-
onal CMs are very common especially for high-dimensional data, since GMM
training involves matrix inversions, which makes full covariance matrices too ex-
pensive in terms of memory and computation time. An interpolation between
these two choices for a d-dimensional problem is given by the Mixture of Factor
Analyzers (MFA) model which decomposes the CM as Σ = D + ΓΓT , where
D = diag(σ1, . . . , σd) and Γ ∈ Rl×d. The parameter l ∈ [1, d] determines the
complexity of the resulting CM. Just like GMMs, MFA instances can be trained
by SGD, see [1].

3 Experiments

In all experiments of this section, we use GMM and SOMs with K = 64 com-
ponents and periodic boundary conditions on a rectangular lattice. The initial
neighbourhood radius for SOM and GMM experiments is set to a quarter of the
diagonal of the lattice, i.e., σ0 =

√
128/4 ≈ 3. The asymptotic neighbourhood ra-

dius is set to σ∞ = 0.01. For SOM experiments, the decay of the neighbourhood
radius is performed as σ = σ0 exp(−e), where e > 1 denotes the current epoch.
For E = 1, the neighbourhood radius is kept at σ0. For GMM training by SGD,
the automatic annealing mechanism is used for controlling the "neighbourhood
radius" σ(t), with default parameters as given in [2].

We use the following image datasets for our experiments. All of them are
relatively high-dimensional and well out of reach of conventional EM-trained
GMMs.

6 A. Gepperth

MNIST [6] consists of 60.000 28× 28 grayscale images of handwritten digits
(0-9).
Fashion-MNIST [10] consists of 60.000 images of clothes in 10 categories and
is structured like MNIST.
Fruits-360 [7] contains 100x100 images showing di�erent types of fruits, from
which we chose the 10 best-represented classes and downsample to 48x48 RGB.

3.1 Data visualization with SOMs, energy-based SOMs and GMMs

Fig. 1. Centroids obtained after training a SOM (left), energy-based SOM (middle)
and GMM (right), arranged on a 10x10 grid, after training on the Fruits-360 dataset.
We observe a similar topologival organization in all three cases.

This is a preliminary experiment meant to show that the data visualization
property of SOMs actually carries over to GMMs, in this case with a diagonal
covariance matrix. The K = 100 GMM centroids, obtained after 100 training
epochs on the Fruits-360 dataset, are visualized in �g. 1, and we observe that they
show the SOM-like topological organization where similar prototypes/centroids
develop next to each other during training.

3.2 Conditional and unconditional sampling from GMMs

dataset Fruits-360 MNIST FashionMNIST

GMM 98.6 89.3 85.2
MFA, l = 4 98.6 89.9 88.8
MFA, l = 25 99.0 91.7 90.9

Table 1. Classi�cation accuracies for linear classi�cation based on MFA and GMM
responsibilities on various datasets. We always use K = 64 components for GMM and
MFA and use two values for the MFA latent dimension l. All accuracies are measured
on the test sets of the respective datasets.

In this section, we demonstrate sampling from GMMs with diagonal covari-
ance matrices, which is performed by assuming an uniform prior over compo-
nents and drawing components from it. In addition, we show that coupling the

Title Suppressed Due to Excessive Length 7

responsibilities of a GMM to a simple linear classi�er allows for the conditional
sampling of given classes. The logic behind this approach is simple: the normal-

ized GMM/MFA responsibilities (or posterior probabilities) γk(x) ≡ pk(x)∑
i pi(x)

are

transformed as y = S(Wγ(x) + b), where S(y) denotes the softmax function.
After being trained by cross-entropy, this linear classi�er can be approximately
inverted as γ̂ = WT (c − b) when fed with a one-hot encoded target vector to
produce a distribution (generally non-uniform in nature) over components, from
which one can draw one for sampling. As we can see in table 1, the obtained
accuracies for the linear classi�er are not excessive, since GMM responsibilities
are not optimized for discrimination. Figure 2 shows both unconditional and
conditional sampling results for GMMs trained for 100 epochs on MNIST, Fash-
ionMNIST and Fruits-360. Conditional sampling is used to generated samples of
class 5, and we can visually con�rm that virtually all produced samples belong
to this class. All reported results are accuracies for single runs, measured on the
test test of the respective benchmarks.

Fig. 2. Samples generated by GMMs with diagonal covariance matrix after training on
MNIST(left column), FashionMNIST(middle column) and Fruits-360(right column). In
the upper row, sampling is unconditional, whereas we conditionally sample from class
5 in the lower row.

3.3 Sampling with MFA instances

Since MFA instances can be considered to be GMMs whose covariance matrix
interpolates between diagonal and full form, we can expect more diverse sampling
results from MFA instances than from GMMs with diagonal covariance matrices.
This is signi�cant since, for high-dimensional data, full covariance matrices would
require excessive memory.

We train an MFA model with a latent dimension of l = 4 on all datasets
described in section 3 for 300 epochs using K = 100 components. The samples
generated by selected components of this model are shown in �g. 3. To show that
the variability is caused by the latent factors and not by di�erent components
being selected for sampling, we always draw samples from a single component.

8 A. Gepperth

Fig. 3. Upper two rows: Sampling results for MFA on MNIST(�rst row) and Fash-
ionMNIST(second row). Each image shows 100 samples produced from the same com-
ponent. Lower two rows: the �rst three latent directions for MFA on MNIST (3rdrow)
and FashionMNIST(4th row).

We indeed observe that samples are quite diverse in terms of slant and stroke
even when coming only from one component. This is especially true when com-
paring MFA-generated samples to those obtained from diagonal-CM GMMs (see
previous section).

The latent directions are shown in �g. 3. Latent directions are the columns
of the matrices Γk, corresponding to (generalized, since the Γk are not full rank)
principal directions. Latent direction i indicates the variations of sampled data
that occur if we move along one axis i in the latent space and are useful for
visualizing the sample variability captured by the MFA model.

3.4 Outlier detection experiments with MFA

For these experiments, we train a single MFA on class 5 of the MNIST and
FashionMNIST datasets (Fruits was omitted since it is a very easy classi�cation
benchmark), and impose a threshold on the log-probability of the best-matching
component in order for a given sample to be classi�ed as an inlier. By varying
this threshold, we obtain a receiver-operator characteristic (ROC) that indicates
the quality of the outlier detector. As we can see in �g. 4, outlier detection is
clearly something that GMMs can perform well. We observe that increasing the
number of latent factors increase the quality of outlier detection. Increasing the
number of components(not shown) has a similar e�ect which is however not as
pronounced.

Title Suppressed Due to Excessive Length 9

Fig. 4. Outlier detection quality. Shown, from left to right, are ROCs for MNIST(4
latent factors), MNIST(25 latent factors), FashionMNIST(4 latent factors) and Fash-
ionMNIST(25 latent factors). Inlier class is always class 5. The area under the curve is
a performance indicator and follows a strict the-larger-the-better principle.

3.5 MFA: generative classi�cation

Generative classi�cation is in essence outlier detection with multiple outlier de-
tection models Mi, each model being trained on class i only. For testing, each
model produces a score for the test sample, and the model with the highest
score de�nes the predicted class for that sample: p(c|x) = argmaxiMi(x). If the
outlier detection models are of su�cient quality, this scheme is not more com-
putationally demanding than training a conventional DNN classi�er, because
although there are now several models, each model only gets trained on a small
part of the data. We again found that this works best with MFA and a rather
high latent dimensionality, e.g., l = 25. For reference, we also train conventional
GMMs for this problems and compare the results (see table 2. All reported re-
sults are accuracies for single runs, measured on the test test of the respective
benchmarks. It is important to note that generative classi�cation is actually su-
pervised learning: although the labels are not used while training the individual
outlier detectors, they are used for assigning data samples to outlier detectors
for training.

dataset Fruits-360 MNIST FashionMNIST

GMM 91.0 85.3 81.2
MFA, l = 4 92.6 85.9 83.3
MFA, l = 25 98.5 95.7 92.3

Table 2. Results for generative classi�cation using MFA and GMM outlier detection
models on various datasets.

4 Discussion and outlook

In this article, we argue that SGD-trained Gaussian Mixture Models can be used
as a drop-in replacement for SOMs in data visualization tasks that SOMS are
typically used for. In particular, training GMMs by SGD enables them to process
large amount of high-dimensional data which is required for data visualization

10 A. Gepperth

and other typical data science tasks. We showed that SOMs can be considered
an approximation to GMMs in a particular, simplifying case, and that SOMs
do have a probabilistic interpretation. However, we argue that GMMs are much
better suited than SOMs for performing typical data science functions such as
outlier detection, sampling and generative classi�cation because they o�er a
much greater �exibility in terms of, e.g., parameterizing the covariance matrix.

References

1. Gepperth, A.: Large-scale gradient-based training of mixture of factor analyzers.
In: International Joint Conference on Neural Networks(IJCNN) (2022)

2. Gepperth, A., Pfülb, B.: Gradient-based training of gaussian mixture models for
high-dimensional streaming data. Neural Processing Letters (2021), accepted

3. Heskes, T.: Energy functions for self-organizing maps. In: Kohonen maps, pp. 303�
315. Elsevier (1999)

4. Heskes, T.: Self-organizing maps, vector quantization, and mixture modeling. IEEE
transactions on neural networks 12(6), 1299�1305 (2001)

5. Kohonen, T.: The self-organizing map. Proceedings of the IEEE 78(9), 1464�1480
(1990)

6. LeCun, Y., Bottou, L., Bengio, Y., Ha�ner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278�2324 (1998)

7. Mure³an, H., Oltean, M.: Fruit recognition from images using deep
learning. Acta Universitatis Sapientiae, Informatica 10(1), 26�42 (2018).
https://doi.org/10.2478/ausi-2018-0002, http://arxiv.org/abs/1712.00580

8. Richardson, E., Weiss, Y.: On GANs and GMMs. Advances in Neural Information
Processing Systems 2018-December(NeurIPS), 5847�5858 (2018)

9. Verbeek, J.J., Vlassis, N., Kröse, B.J.: Self-organizing mixture models. Neurocom-
puting 63, 99�123 (2005)

10. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a Novel Image
Dataset for Benchmarking Machine Learning Algorithms pp. 1�6 (2017),
http://arxiv.org/abs/1708.07747

