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Abstract. This proof-of-concept work generalizes the concept of invari-
ance, as used in contrastive learning, to fully probabilistic models (such
as, e.g., mixture models) that explicitly describe data distributions in an
interpretable fashion, and whose main applications are density estima-
tion (e.g., outlier detection), sampling and tractable inference. Invariance
allows allows probabilistic models to operate at a lower e�ective model
complexity, and therefore to deal with more complex (image) data. In
this article, we propose iGMM, a Gaussian Mixture Model (GMM) that
explicitly incorporates invariance into its loss, which is a generalization
of the conventional GMM log-likelihood. When constructing hierarchies
of conventional GMM and iGMM instances, we obtain invariance prop-
erties that are reminiscent of simple and complex cells in the mammalian
visual cortex. We show, by experiments on the MNIST and FashionM-
NIST dataset, that GMM-iGMM hierarchies can faithfully sample from
learned data distributions even if the iGMM is invariant to some as-
pects of the data, and demonstrate that outlier detection performance is
strongly enhanced in GMM-iGMM hierarchies.
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1 Introduction

Recent years have seen tremendous advances in what is now called generative

models, whose primary function after training is to generate (i.e., sample) images
that are similar to training images. Most prominent representatives of generative
models are doubtlessly GANs and VAEs.

In contrast to this, we term models that aim at directly capturing the data
density p(x) fully probabilistic models. Important examples are mixture models
such as Gaussian Mixture Models (GMMs). Probabilistic models o�er e�cient
sampling, outlier detection as well as tractable inference, although model com-
plexity needs to be signi�cantly higher for realistic data (e.g., images) to produce
meaningful results[10].

1.1 Motivation: complex image data for CL

There are several ways to motivate interest in more powerful probabilistic mod-
els. Besides conceptual reasons, probabilistic models are of particular interest
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in the �eld of continual learning (CL, [13]), i.e., machine learning from non-
stationary data distributions. An obvious concern is, e.g., the detection of non-
stationarity onsets via outlier detection. Furthermore, e�cient sampling is rel-
evant for replay methods in CL where there is a dedicated "generator" for re-
membering "past" samples instead of storing them. Lastly, inference is required
when querying for samples that are similar to the ones that are currently pro-
cessed. Probabilistic model such as sum-product networks (SPNs, see [1,15,8])
are unfortunately not yet able to process complex datasets that contain signi�-
cant structural variations such as color shifts or translations. DCGMMs have had
limited success in handling SVHN [2], although the color variations in particular
pose signi�cant challenges.

Probabilistic models have a drawback: they aim to model the full data distri-
bution, including aspects that are completely irrelevant to downstream tasks. For
example, in a digit recognition problem, the polarity or foreground/background
color of digits is irrelevant, yet, e.g., a GMM will spend considerable resource
capturing these aspects. If probabilistic models such as GMMs could be trained
to ignore certain aspects of the input distribution (e.g., shifts, background color,
rotation, . . . ), this kind of invariance would free up signi�cant resources for
modeling the task-relevant aspects of a data distribution. In a digit recognition
task, such GMMs with invariance (iGMMs) would mainly model aspects related
to shape. Please see �g. 1(left) for a visualization of the concept.

1.2 Related work

To the best of our knowledge, no works that integrate invariance into probabilis-
tic models have been proposed. In the following text, we shall discuss models
that cover some aspects of probabilistic models, which we understand to include
sampling, outlier detection and probabilistic inference:

VAEs and GANs GANS and VAEs do not achieve their considerable successes
by drawing samples from an explicit learned representation p(x) of the data
density. VAEs in particular rather model the prior probability for latent variables
p(z), the conditional decoder density p(x|z) and the conditional encoder density
p(z|x). While VAEs cannot perform tractable inference, they can use importance
sampling to approximate p(x), although at considerable computational cost.
GANs cannot perform density estimation, outlier detection or tractable inference
since they are not formulated in terms of probabilities. A key issue with GANs
and VAEs is that they can use the standard tools of DNNs, such as max-pooling
layers, to ensure invariance at least to positional shifts or rotations.

Flow-based models Flow-based models [9,6,4] try to transform a known dis-
tribution into the observed data distribution by means of adaptive invertible
transformations, usually mediated by special deep neural networks. Indeed, com-
petitive sampling has been demonstrated for complex image data, whereas outlier
detection su�ers from from problems that are not fully understood [17]. Since
the overall distribution is still intractable, inference seems to di�cult as well. As
the overall transformation mediated by any �ow-based model is supposed to be



Probabilistic Models with Invariance 3

invertible, standard DNN mechanisms like max-pooling layers are not applicable
for ensuring invariance.

Sum-product networks Sum-product networks (sometimes termed probabilis-
tic circuits or Einsum networks) [1,8,15] are directed trees whose leaves represent
tractable probability densities, and whose structure aims at e�ciently express-
ing hierarchical mixture models. They are thus a true probabilistic model and
can perform all associated functions. However, they are lacking in expressive-
ness when modeling real-world images: even for MNIST and similar datasets,
generated samples do not seem overly realistic, while more complex problems
like SVHN are currently out of scope. We know of no works that attempt to
incorporate invariance into SPNs or related models.

Mixture models and DCGMMs The most well-known mixture models are
Gaussian Mixture Models (GMMs). They implement a "�at" hierarchy with just
a single layer of computation that is global in the sense that the whole image
is processed at once. There have been several attempts to create hierarchical
GMMs, see., e.g., [14,12,11], which have however only been applied to synthetic
data. Mixture of Factor Analyzers (MFAs) are an extension of GMMs that has
been applied to model the CelebA face dataset [10], although using extensive pre-
training. To the best of our knowledge, the only attempt to create a hierarchical
and convolutional GMM is that of [2], with application to the SVHN dataset.

1.3 GMMs with invariance (iGMMs)

As a key concept, we propose an invariance-enforcing extension to vanilla GMMs
that we term iGMM. iGMM instances are trained with augmented data and
encourage the best-matching GMM component to be identical for all augmented
versions of the same sample. Since iGMMs are based on Mahalanobis distances,
the best-matching component will automatically get more dissimilar to other
samples by consequence. Instead of applying iGMMs to image content directly,
it is advantageous to use them as layers in a hierarchy together with a vanilla
GMM layer, see �g. 1.

1.4 Contributions

This article is a proof-of-concept work operating on simple datasets. The concep-
tual contribution is a proposal for an invariance-enforcing generalization of the
GMM log-likelihood that can be used for SGD training. In addition, we describe
a simple way to sample from a trained GMM-iGMM hierarchy. Experimental
contributions include a training procedure based on GMM-iGMM hierarchies
for the e�cient learning of invariances, as well as an analysis of invariance, sam-
pling and outlier detection properties of such hierarchies.
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Fig. 1. Left: visualization of iGMM invariance, shown for A = 3 augmented versions of
a single sample passed through an iGMM with K = 6 components, resulting in AK =
18 component activities (log-probabilities) color-coded as �lled circles. Invariance to
augmentations translates into the requirement that one component (red ellipse) should
have consistently higher activity for all augmented versions of a sample. The iGMM loss
is formulated such that the component with maximal average (taken over t = 1, 2, 3)
activity is adapted. Right: response to di�erent stimuli (blue letters)) in a GMM-
iGMM cascade. A GMM with 6 components (centroids shown inside large circles) is
directly trained on color-augmented MNIST digits, followed by an iGMM with two
components (centroids again in large circles). GMM responses (marked by red letters,
strength indicated by brightness) show selectivity to slant, color and polarity. iGMM
responses (indicated by green letters) on the other hand just react to di�erent polarities
but are invariant to other image properties.

2 Methods

2.1 Data augmentation in general

We assume the existence of several parameterized transformations τi(p) such
that a training example xν can be augmented as TV(xν) ≡ τ1(v1) ◦ τ2(v2) ◦
. . . (xν),vi ∈ V according to the set of parameter vectors V. By creating a �xed
number A of augmented samples for every xν in a mini-batch of N samples,
we create multi-viewed mini-batches of AN samples for training. The indices
of all augmented version of sample xν are given by P (ν), with |P (ν)| = A.
Conversely, the source index of an augmented sample xn is given by ν(n). The
set of parameter vectors is chosen randomly and uniformly from the ranges
de�ned for a particular transformation.

2.2 Transformations for data augmentation

Channel swap either exchanges two random RGB channel in the whole image or
does nothing, with each of these four possibilities chosen with equal probability.
The parameter vector is either v = (a, b)T for a channel swap, or v = (−1,−1)T

for no swap.
Brightness inversion is a deterministic transformation which simply performs
the operation x → 255−x on all channels simultaneously. The parameter vector
is a single number indicating whether or not to perform this transformation.
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Random image shifts are performed with shifts ∆x, ∆y ∈ [−3, 3] using cyclic
boundary conditions. The parameter vector is simply v = (∆x, ∆y)

T .

2.3 Data and preprocessing

All experiments are based on the MNIST and FashionMNIST datasets.
MNIST [7] consists of 60 000 28× 28 gray scale images of handwritten digits
(0-9). We promote all images to RGB by repeating the single channel 3 times,
and multiplying channels by normalized random factors in the [0, 1] interval.
Prior to normalization, one randomly chosen factor is multiplied by a random
number between 3 and 6 so as to induce stronger colors.
Fashion-MNIST [16] consists of 60.000 images of clothes in 10 categories and
is structured like MNIST.

Both datasets are transformed into colored versions of themselves by setting
all non-black pixels to a randomly selected shade of red, green or blue. For each
sample, we create A = 5 augmented versions using channel swap, image shift
and brightness inversion operations.

2.4 GMMS with invariance: iGMMs

Vanilla GMMs try to represent the target distribution as a weighted sum of
multi-variate normal distributions with centroids µ and covariance matrices Σ:
p(x) =

∑
k πkNk(x;µk,Σk). A trained GMM outputs the posterior probability

γk(xi) =
πkN (x;µk,Σk)∑
j πjN (x;µj ,Σj)

for each image xi and GMM component k.

Generalizing the conventional GMM log-likelihood loss, the iGMM loss pushes
the best-matching component k∗ to be identical for all augmented versions of
the same sample xν , and to be di�erent for other samples as much as possible:

L =
∑
n

log
∑
k

(πkNk(xn)) ≈
∑
n

logmax
k

(πkNk(xn)) =
∑
n

max
k

log (πkNk(xn))

(1)

→
∑
ν

max
k

∑
n∈A(ν)

log(πkNk(xn)). (2)

The �rst expression of eq. (1) represents the incomplete-data loss for a vanilla
GMM. Subsequently, we employ the max-component approximation of the sum
as outlined in [2], which removes exponentials and brings the max operation
in front of the log. In the second row, we generalize to the case of multiple
augmented versions of a single sample xν . The mean over all augmented versions
xn of the sample xν will have high values if the same component consistently
shows high log-probabilities. This is similar to constrastive learning [5], except
that we do not need to enforce dissimilarity to other samples due to the distance-
based nature of the loss eq. (1).

An iGMM can be applied to image data directly, in which case components
tend to averages over augmented samples. This leads to blurred or unrecognizable
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sampling results. A better ways of using iGMMs is to apply them to sparse
data, such as posterior probabilities computed by a vanilla GMM. This allows
to construct a GMM-iGMM sampling chain of hierarchical priors as outlined
in section 2.5 on the one hand, and on the other hand ensures that learned
iGMM components remain sparse as well, which facilitates interpretability and
sampling, please see also �g. 2.

2.5 GMM-iGMM hierarchies

GMM-iGMM hierarchies are trained using a separate loss for the GMM and
iGMM layer. In contrast to standard procedure for, e.g., DNNs, both losses are
not added to form a single overall loss, but optimized in complete independence.
Otherwise, adaptation of GMM parameters would be impacted by the iGMM
loss as well, which has proven to prevent convergence. Both "layers" are linked
through the GMM posterior probabilities which form the input to the iGMM.

Posterior probabilities or responsibilities are computed as γk(x) =
pk(x)∑
j pj(x)

and

are therefore normalized and bounded in the [0, 1] range. Both GMM and iGMM
are trained by SGD according to [3], and iGMM adaptation is prevented until
the GMM annealing parameter σ(t) has reached a value of 0.8, which means
that a certain convergence has already been achieved.

Sampling in a GMM-iGMM hierarchy is performed by generating a sample
in the iGMM layer, which is used as a prior over component selection probabili-
ties when sampling from the GMM layer. When sampling from a certain GMM
component directly, this hierarchical prior mechanism is disabled.

3 Experiments

We conduct the experiments with GMMs, iGMMs and GMM-iGMM hierar-
chies according to the following principles: most importantly, all optimization
is carried out by SGD (not Expectation-Maximization or similar schemes). Im-
age data are converted to vectorial form by simple �attening (e.g., a 28x28x3
images becomes a 2352-dimensional vector). When image augmentation as de-
scribed in section 2.1 is just performed for training, whereas only unaugmented
colored samples are used during evaluation. In hierarchies, the forward pass for
one samples (regardless of training or testing) consist always of passing the vec-
tor of GMM responsibilities as input to the iGMM. Furthermore, the GMM and
iGMM loss are optimized in parallel, and adaptation is inhibited for the iGMM
until the GMM has converged su�ciently.

3.1 Preliminary experiment: naive application of iGMMs

For this experiment, we directly train an iGMM instance on MNIST data aug-
mented as described in section 2.3. To illustrate the developed component se-
lectivities, we sample from certain components of this iGMM and display the
resulting images. see �g. 2. We can observe that components tend to get selective
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Fig. 2. Component selectivities of an iGMM instance that has been directly trained
on augmented data, visualized by sampling from these components.

to "average samples", which are mainly blank since polarity-inversed samples will
cancel each other out in the average.

3.2 Formation of simple/complex cells in GMM-iGMM hierarchies

Fig. 3. Component selectivities in a GMM-iGMM hierarchy visualized by sampling
from di�erent iGMM (upper row) and GMM (lower row) components after training
on colored FashionMNIST. We can observe invariance, to di�erent degrees, for iGMM
components but none for GMM components.

Motivated by the negative outcome of section 3.1, we perform a similar ex-
periment with a GMM-iGMM hierarchy as described in section 2.5. Again, we
determine component selectivities through selectively sampling from those com-
ponents, both for the GMM and the iGMM "layer". Sampling from the GMM
layer is performed in the standard GMM way, whereas sampling from the iGMM
layer proceeds in two steps: �rst of all, the iGMM is queried for a sample, again
in the standard way. This sample is then taken to represent a multinomial dis-
tribution over GMM components, from which we draw a sample that identi�es
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Fig. 4. Component selectivities in a GMM-iGMM hierarchy visualized by sampling
from di�erent iGMM (upper row) and GMM (lower row) components after training on
colored MNIST. We can observe invariance, to di�erent degrees, for iGMM components
but none for GMM components.

a GMM component. This component will produce the �nal sampling result from
the multivariate Gaussian distribution it represents.

In �g. 3 and �g. 4, we observe very interesting behavior: iGMM compo-
nents are selective to stimuli of multiple polarities and colors, whereas GMM
components are selective just for one given con�guration w.r.t. these axes. It is
furthermore discernible that, although iGMM components do have preferences
for, e.g., certain colors or polarities, they always show some degree of invariance.
This is reminiscent of the behavior of simple/complex cells in the visual cortex:
whereas simple cells respond only to test stimuli of a given polarity, complex cells
respond to the same stimuli but with inversed polarity. We �nd it noteworthy
that such behavior arises naturally through unsupervised learning.

3.3 Explicitly measuring invariance

In this section, we introduce am explicit measure of invariance for assessing the
di�erences between GMM and iGMM "layer" in a GMM-iGMM hierarchy. The
measure is recorded over the course of training and evaluated on the test set
as well. The invariance measure we propose essentially measures the maximal
number of times any component is best-matching unit (BMU) for all augmented
version of a given sample, averaged over all distinct samples in the the test set.
We de�ne the invariance measure based on the posterior probabilities γ(x):

χk(x) =

{
1 k = argmaxj γk(x)
0 else

(3)

Using the notation form section 2.1, we can count the number of times any
component was BMU for all augmented version of a single sample as ck(ν) =
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Fig. 5. Invariance measure C for the GMM andf iGMM layer plotted over the course
of 120 training epochs for MNIST(left) and FashionMNIST(right). Invariance measures
plotted on the respective test sets after epoch 120 are shown as dashed lines. We observe
that the iGMM layer always shows higher invariance.

∑
xn∈P (ν) χk(xn(ν). The desired invariance measure C is then found as: C =

Eν maxk ck(ν). When training a GMM-iGMM hierarchy on MNIST and Fash-
ionMNIST, we obtain the curves depicted in �g. 5, from which we can observe
a markedly higher invariance for the iGMM layer.

4 Discussion

From the experiments of the previous section, we conclude that GMM-iGMM
hierarchies are capable of capturing simple invariances, and to nevertheless per-
form faithful sampling in the input domain. The modi�cation of the iGMM loss
to reward invariance appears to be bene�cial for describing abstract concept with
fewer components, as shown by the success of the outlier detection experiment.
Some speci�c topics seem worth highlighting here:

Choice of datasets Since this is a proof.of-concept work, we do not perform
experiment on complex real-world datasets such as CIFAR since these are hard
to model even for dedicated generators such as VAEs. When moving to deep
convolutional hierarchies as outlined in [2], such datasets will within the range
of capabilities of our probabilistic models.

Assessment of selectivities through sampling Since probabilistic models
always have the capacity to sample, we consider this an interesting and natural
tool for visualizing component selectivities. This is in stark contrast to deep neu-
ral networks, where one has to resort to complex procedure like deep dreaming
to analyze selectivities of speci�c neurons.

Link to constrastive supervised learning The approach to training iG-
MMs is similar to the one taken by constrastive learning approaches. Certainly,
data augmentation is a common property, but also the explicit modeling of in-
variances. We believe that by generalizing GMM-iGMM hierarchies to deeper
convolutional hierarchies, we can model invariances at a local image level and
learn feature compared to those obtained by contrastive learning.
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Reproducibility We will release TF2-based Python code to reproduce all ex-
periments.
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