
Adiabatic replay for continual learning
1st Anonymous Author
Anonymous Department

Anonymous Affiliation
Nowhere

anonymous email

2nd Anonymous Author
Anonymous Department

Anonymous Affiliation
Nowhere

anonymous email

Abstract—To avoid catastrophic forgetting, many replay-based
approaches to continual learning (CL) require, for each learning
phase with new data, the replay of samples representing all of
the previously learned knowledge. Since this knowledge grows
over time, such approaches invest linearly growing computational
resources just for re-learning what is already known. In this
proof-of-concept study, we propose a generative replay-based
CL strategy that we term adiabatic replay (AR), which achieves
CL in constant time and memory complexity by making use
of the (very common) situation where each new learning phase
is adiabatic, i.e., represents only a small addition to existing
knowledge. The employed Gaussian Mixture Models (GMMs) are
capable of selective updating only those parts of their internal
representation affected by the new task. The information that
would otherwise be overwritten by such updates is protected by
selective replay of samples that are similar to newly arriving ones.
Thus, the amount of to-be-replayed samples depends not at all
on accumulated, but only on added knowledge, which is small
by construction. Based on the challenging CIFAR and SVHN
datasets in combination with pre-trained feature extractors, we
confirm AR’s superior scaling behavior while showing better
accuracy than common baselines in the field.

Index Terms—catastrophic forgetting, continual learning, class-
incremental learning, generative replay, selective replay, selective
updating, adiabatic replay

I. INTRODUCTION

This contribution is in the context of continual learning
(CL), a recent flavor of machine learning that investigates
learning from data with non-stationary distributions. A com-
mon effect in this context is catastrophic forgetting (CF),
an effect where previously acquired knowledge is abruptly
lost after a change in data distributions. In class-incremental
CL (see, e.g., [1], [2]), a number of assumptions are made:
distribution changes are assumed to be abrupt, partitioning
the data stream into stationary tasks. Then, task onsets are
supposed to be known, instead of inferring them from data.
Lastly, tasks are assumed to be disjoint. Together with this
goes the constraint that no, or only a few, samples may be
stored. A very promising approach to mitigate catastrophic
forgetting (CF) in this scenario are replay strategies [3]. Replay
aims at preventing CF by using samples from previous tasks
to augment the current one. On the one hand, there are ”true”
replay methods which use a small number of stored samples
for augmentation. On the other hand, there are pseudo-replay
methods, where the samples to augment the current task are
generated in potentially unlimited quantity, which removes
the need to store samples. A schematics of the training

solver

generator

new data

generated data

 task Tischolar Ti-1 scholar Ti

train

train

solver

generator

Selective
replaysolver

generator

new data

gen. data

 task Tischolar Ti-1 scholar Ti

train

train

solver

generator
Selective updating

Fig. 1: Top: schematics of generative replay. A scholar
composed of generator and solver is trained at every task.
The solver performs the task, e.g., classification, whereas the
generator serves as a memory for samples from previous
tasks Ti′ , i′ < i. Please note that the amount of generated
data usually far exceeds the amount of new data. Bottom:
schematics of adiabatic replay, red indicates differences to
generative replay. At every task, new data is used to query the
generator, therefore generated data are produced in constant
proportion. Furthermore, the generator additionally serves a
feature generator for the solver, thus saving computational
resources.

process in generative replay is given in Fig. 1. Replay, in
its original formulation, proposes a principled approach to
CL, but it nevertheless presents several challenges: First of
all, if DNNs are employed as solvers and generators, then
all classes must be represented in equal proportion at every
task in order to have any kind of performance guarantees.
Thus, for example, in the simple case of a single new class
(D samples) per task, the generator must produce (s − 1)D
samples at task Ts in order to always train with D samples
per class. This unbounded linear growth of to-be-replayed
samples, and therefore of training time, as a function of the
number of previous tasks s, poses enormous problems for
long-term CL. For instance, even very small additions to a
large body of existing knowledge (a common use-case) require
a large amount of samples to be replayed, see, e.g., [4]. As
replay is a lossy process, there are strict limits to GR-based
CL performance.

A. Approach: AR

Adiabatic replay (AR) prevents an ever-growing number of
replayed samples by applying two main strategies: selective
replay and selective updating, see Fig. 1. While the former
means that new data are used to query the generator for similar
(potentially conflicting) samples, the latter allows to only adapt
specific regions of the semi-localized knowledge represen-
tation. For achieving selective replay, we rely on Gaussian
Mixture Models (GMMs) trained by SGD as introduced in [5].
GMMs may have limited modeling capacity, but are sufficient
when working with pre-trained feature extractors.

AR is partly inspired by maximally interfered retrieval
(MIR), proposed in [6] where a fixed replay budget (either
for experience replay or generative replay) is composed of
the most conflicted samples, those that would be unlearned
most rapidly when training on a new task. In a similar vein,
[7] hypothesize that just replaying samples that are similar
to new ones could be sufficient to avoid forgetting. Another
inspiration comes from [8], where it is shown that replaying
the right data at the right moment is preferable to replaying
everything.

Adiabatic replay is most efficient when each task t, with
data x⃗∼ p(t), adds only a small amount of new knowledge. AR
models the joint distribution of past tasks as a mixture model
with K components, p(1...t−1)(x⃗) =

∑
k πkN (x⃗; µ⃗k,Σk),

thus we can formalize this assumption as a requirement that
only a few components in this mixture model are activated by
new data: |{argmaxk πkN (x⃗i; µ⃗k,Σk), x⃗i ∼ p(t)}| << K.
A violation of this assumption would not necessarily break
AR, but more components will need to be updated, requiring
more samples. It was demonstrated in [5] that GMMs have an
intrinsic capacity for selective updating when re-trained with
new data. Concretely, only the components that are similar
to, and thus potentially in conflict with, incoming data are
adapted. In contrast, dissimilar components are not adapted,
and are thus protected against CF.

B. Contributions

Selective replay: Previous knowledge is not replayed indis-
criminately, but only where significant overlap with new data
exists.
Selective updating: Previous knowledge is only modified by
new data where an overlap exists.
Near-Constant time complexity: Assuming that each task
adds only a small fraction to accumulated knowledge (adia-
batic assumption), the number of generated/replayed samples
can be small as well, and in particular does not grow with the
number of tasks.
Integration of pre-trained feature extractors: To process
visual problems of higher complexity (SVHN, CIFAR), we
incorporate recent advances in latent replay into AR, where
we do not replay raw samples but higher-level representations
generated by a frozen feature extractor network.

C. Related Work

In recent years, many methods from a broad spectrum for
mitigating CF and enabling CL have been presented, please
refer to [9]–[12] for an overview. In this paper, however, we
will focus on rehearsal-type CL.
Rehearsal/Replay Such solutions rely on the storage of
previously encountered data instances, and may follow quite
simplistic but still very effective techniques to avoid CF,
i.e. by mixing real data with the content of some saved
buffer, as shown in [13]–[16]. This has drawbacks in practice,
since it breaks the constraints for task-incremental learning
[17], has privacy concerns, and requires significant memory.
Partial replay, e.g. [18], and constraint-based optimization
[19]–[22], aims to select a subset for replay, but it appears
that appropriate sample selection is still challenging [23].
Comprehensive overviews about current advances in replay
can be found in [24], [25].
Deep Generative Replay Here, (deep) generative models are
used for memory consolidation by replaying samples from pre-
vious tasks, see Fig. 1 and [26]. The recent growing interest in
GR brought up a variety of architectures, building up on either
VAEs [27]–[32] or GANs [33]–[36]. Notably, the MerGAN
model [37] uses an LwF-type knowledge distillation technique
to prevent forgetting in generators, which is more efficient
than pure replay. Furthermore, PASS [38] uses self-supervised
learning by sample augmentation in conjunction with slim
class-based prototype storage for improving the performance
replay-based CL. An increasingly employed technique in this
respect is latent replay which operates on and replays latent
features generated by a frozen encoder network, see, e.g., [3],
[39], [40]. Built on this idea are models like REMIND [41],
which extends latent replay by the aspect of compression,
or SIESTA [42] which improves computational efficiency by
alternating wake and sleep phases in which different parts of
the architecture are adapted.
MIR Conceptually, this is similar to the concept of selective
replay, although a key difference is that AR’s GMM-generator
and solver are capable of selective updating as well. We will
use MIR as one of the baselines for latter experiments.

II. METHODS

In the experimental part of this study we investigate adi-
abatic replay (AR), experience replay (ER), deep generative
replay (DGR), brain-inspired replay (BI-R), maximally inter-
fered retrieval (MIR) as well as pre-trained feature extractors.

A. Adiabatic replay (AR)

In contrast to original replay, where a scholar instance is
composed of two complementary networks, namely a genera-
tor and solver, see Fig. 1, AR proposes a single network acting
as a conventional generator, as well as a feature generator for
the solver. Assuming a suitable scholar (see below), the high-
level logic of AR is showcased in Fig. 2: Each sample from
a new task is used to query the scholar, which generates a
similar, known sample. Mixing new and generated samples in a
predefined constant proportion, creates the training data for the

 task Ti

scholar

3. retrain

1. query

GMM
2. generate GMM

updated scholar

centroids merged data

1. query

0. feature encoding

[1,1,2048]

Fig. 2: The proposed AR approach, illustrated in an exemplary MNIST setting. The scholar (GMM) has been trained on MNIST
classes 0, 4 and 6 in a previous task T1. At task T2, new data (class 9) is used to query the scholar for similar samples, resulting
in the selective replay of mostly 4’s but no 0’s nor 6’s. The scholar is re-trained from its current state, so no data concerning
class 0 and 6 are required. Re-training results in the insertion of 9’s into the existing components while still protecting some
of the components representing 4’s (green boxes). This mechanism works identically for higher-level features produced by a
pre-trained feature extractor, see the optional step 0.

current task (see Algorithm 1 for pseudocode). A new sample
will cause adaptation of the scholar in a localized region of
data space. Variants generated by that sample will, due to
similarity, cause adaptation in the same region. Knowledge
in the overlap region will therefore be adapted to represent
both, while dissimilar regions stay unaffected (see Fig. 2 for
a visual impression). None of these requirements are fulfilled
by DNNs, which is why we implement the scholar by a GMM
layer (generator/feature encoder) followed by a linear classifier
(solver). Both are independently trained via SGD according to
[5].

Data: AR scholar/gen. Φ, AR solver Θ, real data X t, Y t

for t ∈ 2...T do
for BN ∼ X t do

// Propagate batch BN though Φ.
σBN ← Φ(BN);
// Query batch of variants from Φ.
BG ← V argen(Φ, σBN) ;
// Add gen. samples to X t

G.
X t

G ← UpdateData(BG)
end
for BM ∼ (X t ∪ X t

G) do
// Update Φ and Θ
Φ← SGD(BM);
Θ← SGD(Φ(BM), Yt);

end
end

Algorithm 1: Adiabatic Replay

Selective updating is an intrinsic property of GMMs. They
describe data distributions by a set of K components, con-
sisting of component weights πk, centroids µk and covari-
ance matrices Σk. A data sample x is assigned a proba-
bility p(x) =

∑
k πkN (x;µk,Σk) as a weighted sum of

normal distributions N (x;µk,Σk). Training of GMMs is
performed as detailed in [5] by adapting centroids, covari-
ance matrices and component weights through the SGD-
based minimization of the negative log-likelihood L =∑

n log
∑

k πkN (xn;µk,Σk). As shown in [5], this expres-
sion is strongly dominated by a single GMM component k∗,
and can be approximated as − log(πk∗N (x;µk∗ ,Σk∗)). This
implies that the best-matching GMM component k∗ is the only
component that selectively adapted.
Selective replay is a form of sampling from the probability
density represented by a trained GMM, see [43]. It is triggered
by a query in the form of a data sample xn, which is converted
into a control signal T defined by the posterior probabilities
(or responsibilities):

γk(xn) =
πkN (xn;µk,Σk)∑
j πjN (xn;µj ,Σj)

. (1)

For selective replay, these responsibilities parameterize a
multinomial distribution for drawing a GMM component k∗ to
sample from, instead of the component weights πK as usually
done in GMM sampling. To reduce noise, top-S sampling is
introduced, where the three highest component responsibilities
determine the selection.
Solver functions are performed by feeding GMM responsibil-
ities into a linear regression layer as o(xn) = Wγ(xn). We
use a MSE loss and drop the bias term to reduce the sensitivity
to unbalanced classes.

III. EXPERIMENTAL SETUP

A. Data

MNIST [44] consists of 60.000 28× 28 grayscale images of
handwritten digits (0-9).

Fashion-MNIST [45] consists of 60.000 images of clothes in
10 categories and is structured like MNIST.
E-MNIST [46] is structured like MNIST and extends it by
letters. We use the balanced split which contains 131.000
samples in 47 classes.
SVHN [47] contains 60.000 RGB images of house numbers
(0-9, resolution 32× 32).
CIFAR-10 [48] contains 60.000 RGB images of natural ob-
jects, resolution 32x32, in 10 balanced classes.
Feature encoding of SVHN and CIFAR is described in
Sec. IV-F. However, for MNIST, Fashion-MNIST and E-
MNIST it is not performed due to their inherent simplicity.
Class incremental learning (CIL) problems are constructed
by splitting the datasets as follows: D7-13A (4 tasks, 0-
6,7,8,9), D7-13B (4 tasks, 3-9,0,1,2), D5-15A (6 tasks, 0-
4,5,6,7,8,9), D5-15B (6 tasks, 5-9,0,1,2,3,4), D2-25A (5 tasks,
0-1,2-3,4-5,6-7,8-9), D2-25B (5 tasks, 8-9,6-7,4-5,2-3,0-1),
D20-15A (6 tasks, 0-19,20,21,22,23,24, EMNIST only) and
D20-15B (6 tasks, 5-24,0,1,2,3,4, EMNIST only). All data are
normalized to a range of [0, 1] before being processed.

B. Evaluation metrics

When training a solver S on a class-incremental learning
problem with T tasks, let the accuracy metric αij denote the
accuracy of the solver Si after being trained on tasks 1, . . . , i
and evaluated on the test set of task j with i, j < T .

The final accuracy αT is computed by evaluating ST on
a joint test set TALL. For reference, αbase measures the joint-
training (JT) performance, i.e., the accuracy achieved on TALL

by a scholar after training on the union of all tasks. Similar to
[49], [50], we define an average forgetting measure FT which
reflects the loss of knowledge about previous tasks, and which
is defined as follows:

Fij = max
i∈{1,..,T−1}

αij − αTj ∀j < T

FT =
1

T − 1

T−1∑
j=1

FTj FT ∈ [0, 1]. (2)

C. Scenarios for replay experiments

For all replay experiments (AR, ER and DGR), we
distinguish three different experimental scenarios: constant,
balanced and weighted.

In the constant scenario, replay of Di samples is performed
before training on task Ti, i > 1 using the current scholar
Si−1, where Di represents the amount of training samples
contained in Ti. This strategy keeps the amount of generated
samples constant w.r.t the number of tasks, and thus comes
with modest temporary storage requirements. Mini-batches β
consist to an equal proportion of samples from Ti, as well as
generated samples. It is worth noting that, in this scenario,
classes will in general not be balanced, and that it is not
required to store the statistics of previously encountered class
instances/labels.

In the balanced scenario, the amount of replayed samples Di

scales linearly w.r.t the number of tasks, and the proportions
of classes in a mini-batch are approximately balanced.

The weighted scenario is similar in spirit to the constant
scenario, with an enhancement inspired by [3]. Here, the
losses of the generator and solver networks consist of two
terms: Lcurrent (data from the current task Ti) and Lreplay
(generated/buffered data). Both loss terms are weighted to
offset the fact that classes are unbalanced in generated and
current data. Assuming that the amount of samples per class
is roughly similar, we compute these weights according to
the total number of classes N encountered in previous and
current tasks T1...TT :

Ltotal =
1

NT1...TT−1

Lcurrent +
NT

NT1...TT−1

Lreplay (3)

IV. IMPLEMENTATION DETAILS

A. AR

AR employs a GMM scholar L(G) with K = 225 com-
ponents and diagonal covariance matrices. The choice of K
is subject to a ”the more the better” principle, and is limited
only by available GPU memory. AR training consists of an
(initial) run on T1, followed by a sequence of independent
(replay) runs on Ti, i > 1. Mini-batch size β is set to 100 for
all experiments.

GMM generator training follows the procedures and best-
practice settings presented and justified in [5], please refer
to this work for recommended learning and regularization
hyperparameters. However, it should be noted that their choice
is less sensitive to any particular CL problem at hand.

Training is terminated via early stopping when L(G) reaches
a plateau of stationary loss for the current task Ti. We set
the training epochs to 512 as an upper bound. Both, L(G)

and the classification head are independently optimized via
vanilla SGD using a fixed learning rate of ϵ = 0.05. The
relative strengths of component weight and covariance matrix
adaptation are set to 0.1. Annealing control regulates the
component adaptation radius for L(G), and sets σ ← 0.96σ
whenever the loss is considered sufficiently stationary. The
initial value is set to σinit

0 =
√
0.125K for the first task T1,

and σreplay
0 = 0.1 for subsequent (replay) tasks Ti, i > 1.

GMM sampling parameters S = 3 (top-S) and ρ = 1.0
(normalization) are kept fixed throughout all experiments.

B. DGR

Deep generative replay (DGR) is implemented using VAEs
as generators. We choose VAEs over GANs or WGANs due
to the experiments conducted in [4], which suggest that GANs
require extensive structural tuning, which is by definition
excluded in a CL scenario for all tasks but the first. Similarly,
GANs and VAEs were both used in CL research, e.g., in [51]
with comparable performance.

The network structure of the generator and solver is
given in Tab. I. Please note that encoders/decoders are

Encoder (DGR) C2D(32,3,2)-ReLU-C2D(64,3,2)-ReLU-
Dense(512)-ReLU-Dense(256)-ReLU-Dense(z*2)

Decoder (DGR) Dense(256)-ReLU-Dense(512)-ReLU-
Dense((H/4)*(W/4)*64)-ReLU-
Reshape((H/4),(W/4),64)-ReLU-

C2DTr.(32,3,2)-ReLU-C2DTr.(C,5,2)-Sig.
C2DTr.(64,3,2)-ReLU-

Encoder (LR) Dense(2000)-ReLU-Dense(2000)-ReLU-Dense(z*2)
Decoder (LR) Dense(128)-ReLU-Dense(512)-

ReLU-Dense(1024)-ReLU-Dense(H*W*C)
Solver Dense(400)-ReLU-Dense(400)-ReLU-

Dense(400)-ReLU-Dense(N)-SoftMax
Solver (ER) C2D(32,3,2)-ReLU-MaxPool2D(2,2)-

C2D(64,3,2)-ReLU-MaxPool2D(2,2)-
Dense(512)-ReLU-Dense(128)-ReLU-

Dense(N)-SoftMax

TABLE I: ANN structures for DGR-VAE/ER.
Encoder/decoder is exclusive for DGR and represents the
employed VAE generator. For latent replay, the intermediate
layers of the generator (DGR) and solver (DGR/ER) up
to output layers (Gaussians/Softmax) were replaced with
fully-connected layers and ReLU activation.

fully-connected DNNs, when operating on latent features
(SVHN, CIFAR). The latent dimension z is set to 100 and
the ELBO loss uses a disentangling factor of β = 1.0. Label
information is incorporated to condition the latent space to
preserve the generator’s ability to generate equal proportions
for previously seen classes. The learning rate for VAE
generators and solvers are set to ϵG = 10−4, ϵS = 10−3 using
the ADAM optimizer with β1 = 0.9, β2 = 0.999. Generators
and solvers are trained for 200 and 50 epochs, respectively.

C. ER

ER uses a solver with the layer structure shown in Tab. I,
see Solver (ER). The ADAM optimizer is used with a learning
rate of 10−4, β1 = 0.9, β2 = 0.999, and the scholar is trained
for 100 epochs on each task. Analogous to the procedure for
DGR, we use replay on latent feature representations, see e.g.,
[39] as described in Sec. IV-F for SVHN and CIFAR. In this
case, the network is taken to be the same as the solver for
DGR. Reservoir sampling [52] is used to select 50 samples
of each encountered class to be stored per task. For replay,
oversampling of the buffer is performed to obtain a number
of samples, equal to the amount of data instances Di present
in the current task Ti.

D. Gen-MIR

We perform Gen-MIR experiments as described in [6] using
the author’s software, adapted to work with different datasets
and dataset splits. We employ the optimal parameter settings
for the Split-MNIST problem as described in [6], using 5500
training samples per task. On top of that, we perform a grid
search in parameter space for the parameters n mem ∈ {1, 3},
gen iters ∈ {5, 15}, cls iters ∈ {5, 15}, mir iters ∈ {2, 5, 10},
gen kl coeff ∈ {0.1, 0.5, 1.0}, mem coeff ∈ {1, 3}. Since the
first task for the EMNIST dataset contains a large number of
classes, we use 10.000 samples in this case.

E. BI-R

Brain-inspired replay experiments are conducted as de-
scribed in [3], using the author’s code adapted to different
datasets and dataset splits. Best-practice parameters as de-
scribed by the authors are used, except that we modify the
weighting of present and past tasks based on the number of
classes in past and current tasks, see Sec. III-C.

F. Use of pre-trained feature extractors

It has been shown that encoding features using pre-trained
networks, which convert raw data into a higher quality
and more invariant representation, is beneficial for CL [3],
[39], [41]. A current promising direction of pre-training
such models is contrastive learning, which is performed in a
supervised [53] (SupCon) or self-supervised fashion [54]–[56]
(SSCL). In this study, we rely on SupCon to build a robust
feature extractor for more complex datasets (SVHN, CIFAR).

We take a portion of the data from the target domain
for pre-training, but exclude these instances from further
usage in downstream CL tasks. For SVHN, we pull an
amount equal to 0.5 of the total training samples from the
”extra” split. For CIFAR10 we split the training set in half
and use one for pre-training and the other for encoding and
later usage in downstream CL. The data used to pre-train
the feature extractor are thus similar but not identical to
subsequent training data, following the approach of [3]. An
additional data augmentation module normalizes the input,
performs random horizontal flipping and rotation in the range
of −2% ∗ 2π −+2% ∗ 2π for each input image. The encoder
backbone is a ResNet-50 with randomly initialized weights
and is trained for 256 epochs using a batch size of β = 256.
No further fine-tuning is performed after pre-training. We
use the normalized activations of the final pooling layer
(D = 2048) as the representation vector. For supervised
training, a projection head is attached, consisting of two
hidden layers, having a total of 2048 and 128 projection
units, followed by ReLU activation. The multi-class npairs
loss [57] uses a temperature of 0.05 and is optimized via
ADAM with a learning rate of ϵ = 0.001, β1 = 0.9 and
β2 = 0.999. After pre-training we push the complete training
data through the encoder network and save the output to disk
for later usage. However, it would be perfectly legitimate to
use the model on-the-fly to encode the data mini-batch wise,
though this comes at the cost of a worse runtime efficiency.

G. Sequential Fine-Tuning (SFT)

For SFT, we use the baseline DNN which is identical to the
ER solver. This DNN is trained with a normal learning rate of
0.001 on T1, and with a reduced learning rate of 0.0001 for
all subsequent tasks.

V. EXPERIMENTS AND RESULTS

All experiments are run on a cluster of 30 machines
equipped with single RTX3070Ti GPUs. We perform ten
randomly initialized runs for the supervised CIL problems

described in Sec. III-A, as well as baseline experiments to
measure offline JT performance.

A. Selective replay functionality

First, we demonstrate the ability of a trained GMM to query
its internal representation through data samples and selectively
generate artificial data that ”best match” those defining the
query. To illustrate this, we train a GMM layer of K = 25
components on MNIST classes 0, 4 and 6 for 50 epochs using
the best-practice rules described in Sec. IV-A. Then, we query
the trained GMM with samples from class 9 uniquely, as
described in Sec. II. The resulting samples are all from class
4, since it is the class that is ”most similar” to the query class.
These results are visualized in Fig. 2. Variant generation results
for deep convolutional extensions of GMMs can be found in
[58], emphasizing that the AR approach can be scaled to more
complex problems. This approach works identically for latent
replay, as it only requires prior encoding of the raw data, as
shown in the figure.

B. CIL comparison

This experiment evaluates the CL performance of AR
w.r.t. the measures given in Sec. III-B, and compares its
performance to MIR, BI-R, DGR-VAE, and ER (see Sec. IV),
since these represent principled approaches to replay-based
CL. Further, we show results for sequential fine-tuning (SFT),
as well as baseline joint training performance on all datasets
for a DNN (identical to the ER solver) and AR. The results
are given in Tab. II.

Baseline and initial task performance We observe superior
JT (i.e., non-CL) performance for the DNN on all datasets,
except encoded CIFAR as shown in Tab. II (bottom part). This
indicates that the DNN scholar is better suited for the dis-
crimination of all investigated ”raw” datasets. This advantage
diminishes for latent replay, however. On the other hand, AR
relies on a considerably less complex structure in its current
state. For instance, DGR uses significantly more trainable
parameters, especially when operating on latent features, or
generally speaking, data of high dimensionality.

Th factor is 8.7 when applying DGR to RGB data and 16
when applying it to latent features. The ability to perform well
on the JT may also directly translate to a better starting point
for CIL with DGR and ER due to the higher performance
reached on the initial task T1.

Constant-time replay is problematic for DGR We observe
that DGR performs worse in the constant setting, at least
for data with higher complexity than MNIST, or when the
number of tasks increases. This observation can be confirmed
by experiments with different numbers of tasks. To a slightly
lesser extent, this is also observed for ER on, e.g., EMNIST.
In contrast, AR is specifically designed to work well when the
amount of generated samples is kept constant for an increasing
number of tasks. Figure 3 shows the count of generated
samples over time for AR and DGR in a balanced scenario

for MNIST D5-15A, respectively. This also inevitably results
in longer training periods for the VAE generator.

Fig. 3: Top: The amount of samples generated per task for
the MNIST D5-15 problem by DGR if class balancing is to
be achieved, and a comparison to samples generated by AR.
Bottom: The averaged per epoch training duration of DGR (b.)
and AR. Dashed lines indicate a task switch.

AR –vs– ER Generally, ER shows good results, stable for-
getting rates and often outperforms AR when operating on
raw inputs (MNIST, FMNIST and E-MNIST), although the
differences are not striking. However, a comparison between
ER and AR is biased in favor of ER since AR does not get to
see any real samples from past tasks. Rather, ER serves as a
baseline of what can be reasonably expected from AR, and we
observe that this baseline is generally quite well egalized. It
is surprising to see that latent AR is able to achieve generally
better results than latent ER. It could be argued that the budget
per class for a more complex dataset like SVHN and CIFAR-
10 is rather small, and it can be assumed that increasing
the budget would increase CL performance. However, we
reiterate that this is not trivially applicable in scenarios with
a constrained memory budget.
Furthermore, ER has the disadvantage that training time and
memory usage grow slowly but linearly with each added task,
which is a unrealistic premise in practice. A fixed memory
budget mitigates this problem, but has the negative effect that
samples from long-ago tasks will be lost over time, which will
render ER ineffective if the number of tasks is large.

CIL-P D7-1ˆ3A D7-1ˆ3B D20-1ˆ5A D20-1ˆ5B
dataset MNIST F-MNIST SVHN CIFAR10 MNIST F-MNIST SVHN CIFAR10 E-MNIST

m
et

ho
d

AR .75 / .10 .70 / .10 .89 / .03 .70 / .05 .83 / .07 .68 / .10 .91 / .02 .64 / .17 .53 / .10 .53 / .09
BI-R (w.) .75 / .11 .71 / .12 .58 / .18 .52 / .19 .77 / .09 .70 / .12 .55 / .19 .49 / .22 .0.25 / .42 .0.27 / .39
DGR (b.) .93 / .03 .80 / .08 .63 / .18 .51 / .18 .93 / .03 .70 / .16 .73 / .14 .45 / .25 .55 / .27 .62 / .26
DGR (c.) .93 / .04 .78 / .10 .52 / .25 .44 / .33 .94 / .03 .70 / .17 .59 / .20 .39 / .33 .61 / .28 .57 / .22
DGR (w.) .83 / .12 .75 / .18 .57 / .19 .42 / .22 .91 / .04 .66 / .28 .59 / .20 .37 / .35 .43 / .79 .45 / .61
ER (c.) .90 / .08 .77 / .13 .76 / .10 .59 / .13 .92 / .03 .68 / .18 .78 / .10 .54 / .22 .78 / .22 .78 / .20
ER (w.) .90 / .07 .78 / .13 .80 / .09 .61 / .12 .92 / .03 .68 / .18 .79 / .10 .57 / .20 .75 / .21 .77 / .19
MIR (c.) .79 / .13 .72 / .15 .58 / .19 .53 / .23 .78 / .10 .70 / .11 .53 / .19 .45 / .24 .44 / .26 .46 / .28
MIR (w.) .78 / .11 .73 / .12 .58 / .18 .55 / .21 .71 / .13 .65 / .16 .60 / .18 .44 / .23 .49 / .25 .51 / .25
SFT .18 / .55 .13 / .51 .14 / .55 .15 / .54 .14 / .56 .11 / .53 .13 / .53 .11 / .57 .05 / .56 .04 / .57

CIL-P D2-2ˆ4A D2-2ˆ4B D5-1ˆ5A D5-1ˆ5B
dataset MNIST F-MNIST SVHN CIFAR10 MNIST F-MNIST SVHN CIFAR10 MNIST F-MNIST SVHN CIFAR10 MNIST F-MNIST SVHN CIFAR10
AR .69 / .21 .61 / .36 .77 / .22 .61 / .35 .74 / .14 .63 / .35 .93 / .07 .68 / .35 .71 / .17 .64 / .27 .87 / .09 .64 / .17 .73 / .10 .67 / .33 .86 / .08 .60 / .19
BI-R (w.) .84 / .08 .78 / .11 .56 / .16 .52 / .19 .83 / .08 .75 / .13 .58 / .18 .49 / .22 .79 / .13 .75 / .14 .65 / .17 .61 / .19 .80 / .09 .72 / .13 .64 / .16 .59 / .20
DGR (b.) .94 / .07 .73 / .39 .58 / .42 .45 / .61 .92 / .09 .73 / .32 .75 / .35 .42 / .68 .88 / .09 .72 / .27 .55 / .39 .42 / .48 .89 / .06 .71 / .34 .66 / .38 .39 / .58
DGR (c.) .93 / .08 .71 / .44 .48 / .52 .41 / .63 .94 / .07 .72 / .35 .63 / .51 .40 / .69 .90 / .08 .74 / .27 .46 / .43 .41 / .52 .89 / .07 .68 / .37 .60 / .45 .37 / .65
DGR (w.) .86 / .17 .70 / .49 .52 / .54 .39 / .65 .91 / .10 .71 / .38 .62 / .54 .36 / .70 .75 / .30 .68 / .46 .47 / .55 .35 / .62 .84 / .14 .63 / .53 .49 / .58 .34 / .74
ER (c.) .86 / .17 .66 / .58 .74 / .27 .60 / .46 .88 / .17 .67 / .48 .80 / .27 .58 / .49 .87 / .16 .73 / .39 .76 / .25 .59 / .33 .89 / .09 .68 / .42 .77 / .26 .56 / .48
ER (w.) .87 / .17 .65 / .57 .77 / .24 .59 / .44 .89 / .17 .67 / .47 .83 / .24 .61 / .45 .86 / .16 .72 / .37 .78 / .22 .59 / .34 .89 / .10 .69 / .41 .79 / .23 .59 / .41
MIR (c.) .81 / .10 .76 / .12 .71 / .23 .65 / .35 .80 / .09 .71 / .24 .70 / .25 .63 / .31 .79 / .08 .76 / .14 .68 / .20 .59 / .33 .78 / .14 .74 / .17 .66 / .24 .57 / .29
MIR (w.) .83 / .08 .75 / .12 .74 / .16 .63 / .25 .82 / .09 .77 / .14 .77 / .14 .65 / .23 .80 / .13 .78 / .16 .73 / .26 .58 / .41 .81 / .13 .75 / .16 .72 / .18 .61 / .27
SFT .18 / .55 .12 / .61 .25 / .58 .11 / .61 .20 / .51 .15 / .56 .13 / .61 .11 / .60 .16 / .62 .15 / .64 .11 / .65 .11 / .61 .17 / .54 .13 / .54 .12 / .63 .12 / .60

DS MNIST F-MNIST SVHN CIFAR-10 E-MNIST

m
et

ho
d AR .92 .78 .92 .75 .67

ANN .99 .89 .92 .71 .88

TABLE II: Experimental results. Upper two tables Results of all investigated methods for each CIL-P. Certain methods are
deployed under specific replay scenarios (b. = balanced, c. = constant-time, w. = weighted sample loss). We present the final
test-set accuracy αT followed by the forgetting measure FT . Lower table The joint-training baseline for all datasets. As a
model, we use the ER solver from Tab. I which is trained for 100 epochs. AR uses the architecture and training scheme as
described in Sec. IV-A. Results are always averaged across N = 10 runs. Detailed information about the evaluation process
and experimental setup can be found in Sec. III-B.

AR –vs– Gen-MIR and BI-R MIR and AR share the
concept of selective replay, and they both operate in a
constant-time scenario although MIR can weight generated
and new samples differently in the loss, and thus is conducted
within the weighted scenario. MIR is highly sensitive to
parameters like the weights of different terms in the loss,
which must be set by cross-validation and are thus strictly
speaking not compatible with CL. The results also show
that MIR performs less well for the latent datasets CIFAR
and SVHN. We speculate that this is due to the online
setting which allows only a limited number of epochs to
be processed per task, which could be insufficient for VAE
training on complex data. However, we found that if we
increased the number of epochs too much, forgetting of old
tasks was strongly amplified. This could be due to the fact
that Gen-MIR implements selective replay but cannot perform
selective updates. Similar comments apply to BI-R, which
shows strongly reduced performance on the latent replay
tasks. As a side note, AR incorporates two key concepts from
BI-R (conditional generation and latent replay), although
it does not rely on VAEs for replay, which is presumably
beneficial for performance.

AR: sequential fine tuning (SFT) It is not entirely
surprising that SFT results are inferior throughout, since

SFT implements no dedicated mechanisms to prevent CF.
While SFT may be a viable method when the number of
tasks is very small, it is clear from the presented results
that this is no longer the case as the number of tasks increases.

AR: selective replay AR shows promising results in terms
of knowledge retention and preventing CF for sequentially
learned classes, as reflected by generally lower average
forgetting scores. In virtually all of the experiments, we
observe a very moderate loss of knowledge of the first task
T1 after full training, even if T1 is large such as for the
EMNIST experiments. This suggests that AR’s ability to
handle small incremental additions/updates to the internal
knowledge base over a sequence of tasks is an intrinsic
property, due to the selective replay mechanism. Moreover,
AR demonstrates its intrinsic ability to limit unnecessary
overwrites of past knowledge by performing efficient selective
updates, instead of having to replay the entire accumulated
knowledge each time a task is added.

AR: selective updates As performed by AR training, are
mainly characterized by matching GMM components with
arriving input. Therefore, performance on previous tasks
generally decreases only slightly by the adaptation of se-
lected/similar units, as shown by the low forgetting rates for

almost all CIL-P studied in Tab. II. This implies that the
GMM tends to converge towards a trade-off between past
knowledge and new data. This effect is most notable when
there is successive (replay-)training for two classes with high
similarity in the input space, such as with, F-MNIST: D5-15A,
where task T2 (class: ”sandals”) and task T4 (class: ”sneakers”)
compete for internal capacity.

VI. DISCUSSION

In summary, we can state that our AR approach is
able to compete with SOTA replay-based architectures for
CL problems derived from simple datasets. In contrast, it
outperforms all other methods for more complex datasets,
combined with latent replay. The performance difference
is particularly evident when the investigated methods were
constrained to a constant-time replay setting and was not
significantly altered by weighted replay. This is remarkable
because the AR scholar performs the tasks of both solver
and generator, while at the same time having less parameters
than, e.g., DGR-VAE. We may therefore conclude that AR
offers a principled approach to truly long-term CL. In the
following text, we will discuss salient points concerning our
evaluation methodology and the conclusions we draw from
the results:

Data Some datasets are not considered meaningful
benchmarks in non-continual ML due to their simplicity.
Still, many CL studies rely on these two datasets, which
is why they are included for comparison purposes. SVHN
and CIFAR-10 in particular are considered challenging for
generative replay methods, see [6]. E-MNIST represents a
simple classification benchmark that is quite hard for CL
due to the large number of classes and is well-suited to the
targeted AR scenario where each task adds only a small
fraction of knowledge.

Unbalanced tasks Typical class-incremental CL problems
in the literature consist of tasks containing the same number
of classes. The most commonly used CL task is what we
term D2-24, i.e., two classes to any of 5 tasks. The fact
that all tasks have the same amount of samples and classes
is by now a more or less implicit assumption for many CL
algorithms. For example, BI-R sets the task weights according
to the number of tasks, regardless of their size and class
composition (we adapted this algorithm in that respect for
our experiments). Similarly, the number of replayed samples
in Gen-MIR is always taken to be identical, however it
should be impacted by task sizes if one task is significantly
larger than others (we adapted this as well for the EMNIST
experiments). This study is, to our knowledge, the first to
study CL for strongly unbalanced tasks, which may be a very
common setting in real-world CL and should be properly
investigated for newly proposed CL algorithms.

Pre-trained feature extractors The use of pre-trained
models is appealing in CL, since a lot of complexity can

be ”outsourced” to these models. As shown in [59], the
effectiveness of feature extraction from a frozen pre-trained
model relies on the relation between downstream and upstream
tasks. There seems to be excellent agreement between the
often-used combination of CIFAR and ImageNet, but does
not extend to, e.g., the SVHN dataset without fine-tuning.
Thus, we chose separate pre-trained models for each dataset
that were optimized in a supervised fashion (SupCon) on
similar but not identical data, following [3]. In contrast,
self-supervised contrastive learning alleviates the need of a
large labeled pre-training dataset but relies on the usage of
large mini-batch sizes, as well as complex data augmentation
pipelines [54]–[56]. We decided against such methods as
they only show competitive results when combined with
supervised fine-tuning on labeled data [60], or significantly
increasing the total amount of classes seen in pre-training [61].

Issues with constant-time replay Instead of achieving
balance between new and recalled/generated samples by a
linear increase of the latter, many recently proposed replay
approaches use only a fixed number S of generated or recalled
samples per task. Balance is realized by a higher weight of
past samples in the loss [6]. There are several issues with this:
First of all, for a large number of tasks, each task will be less
and less represented in S samples, making eventual forgetting
inevitable, while weights for past samples grow higher and
higher. Then, giving past samples a higher weight effectively
increases the learning rate for these samples, which can break
SGD if the weights are too high. Alternatively, the weight for
the current samples can be reduced from its baseline value
in some works [3], ultimately leading to low learning rates
and thus long training times. And lastly, the loss weights are
generally set post-hoc via cross-validation [6], [37], which
is inadmissible for CL because it amounts to knowing all
tasks beforehand. AR can use constant-time replay without
weighting past samples due to the selective updating and
selective replay properties.

Violation of AR assumptions The assumption that new tasks
only add a small contribution is not a hard requirement, just a
prerequisite for sample efficiency. Based on the formalization
presented in Sec. I, its validity is trivial to verify by
examining component activations of the GMM generator
when faced with new data. Although we do not implement
such a control strategy here, AR would simply need to
replay more samples if contributions of new data should be
large. However, the chances of this happening in practice
are low, if the body of existing knowledge is sufficiently large.

Initial annealing radius tuning AR contains a few technical
details that require tuning, like the initial annealing radius
parameter r0 when re-training with new task data. We used a
single value for all experiments, but performance is sensitive
to this choice, since it represents a trade-off between new data
acquisition and knowledge retention. Therefore, we intend to
develop an automated control strategy for this parameter to

facilitate experimentation.

VII. CONCLUSION

We firmly believe that continual learning (CL) holds the
potential to spark a new machine learning revolution, since it
allows, if it could be made to work in large-scale settings
on real-world data, the training of models over very long
times, and thus with enormous amounts of data. To achieve
this important milestone, CL research must, to our mind,
imperatively focus on aspects of long-term feasibility, such
as also targeted in domains like life-long learning. A related
aspect is energy efficiency: in order to be accepted and used in
practice, training by CL must be comparable to joint training
in terms of training time (and therefore energy consumption).
Only in this case can the considerable advantages of CL be
made to have beneficial effects in applications. In this study,
we show a proof-of-concept for CL that makes a step in this
direction. Namely, AR operates at a time complexity that is
independent of the amount of previously acquired knowledge,
which is something we also observe in humans. The overall
time complexity is thus comparable to joint training. Further
work will focus on the optimization of AR w.r.t. efficiency
and ease of use, and the question of how to train the feature
extractors in a continual fashion as well.

A. Reproducibility

We will provide a publicly available TensorFlow 2 im-
plementation which will be made publicly available for the
camera-ready version. This repository will contain step-by-
step instructions to conduct the experiments described in this
article. Additional details about experimental procedures and
used parameter settings are given in the various sections of
the appendix (after the references) which are referenced in
the text.

REFERENCES

[1] B. Bagus, A. Gepperth, and T. Lesort, “Beyond supervised continual
learning: a review,” arXiv preprint arXiv:2208.14307, 2022.

[2] G. M. van de Ven, T. Tuytelaars, and A. S. Tolias, “Three types of
incremental learning,” Nature Machine Intelligence, vol. 4, no. 12, pp.
1185–1197, 2022.

[3] G. M. van de Ven, H. T. Siegelmann, and A. S. Tolias, “Brain-inspired
replay for continual learning with artificial neural networks,” Nature
communications, vol. 11, no. 1, pp. 1–14, 2020.

[4] N. Dzemidovich and A. Gepperth, “An empirical comparison of gen-
erators in replay-based continual learning,” in European Symposium on
Artificial Neural Networks (ESANN), 2022.

[5] A. Gepperth and B. Pfülb, “Gradient-based training of gaussian mixture
models for high-dimensional streaming data,” Neural Processing Letters,
vol. 53, no. 6, pp. 4331–4348, 2021.

[6] R. Aljundi, L. Caccia, E. Belilovsky, M. Caccia, M. Lin, L. Charlin,
and T. Tuytelaars, “Online continual learning with maximally interfered
retrieval,” in Neural Information Processing Systems, 2019.

[7] J. L. McClelland, B. L. McNaughton, and A. K. Lampinen, “Integration
of new information in memory: new insights from a complementary
learning systems perspective,” Philosophical Transactions of the Royal
Society B, vol. 375, no. 1799, p. 20190637, 2020.

[8] M. Klasson, H. Kjellström, and C. Zhang, “Learn the time to learn:
Replay scheduling in continual learning,” Transactions on Machine
Learning Research, vol. 9, 2023.

[9] M. De Lange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis,
G. Slabaugh, and T. Tuytelaars, “A continual learning survey: Defying
forgetting in classification tasks,” IEEE transactions on pattern analysis
and machine intelligence, vol. 44, no. 7, pp. 3366–3385, 2021.

[10] M. Masana, X. Liu, B. Twardowski, M. Menta, A. D. Bagdanov, and
J. van de Weijer, “Class-incremental learning: survey and performance
evaluation on image classification,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 2022.

[11] R. Hadsell, D. Rao, A. A. Rusu, and R. Pascanu, “Embracing change:
Continual learning in deep neural networks,” Trends in cognitive sci-
ences, vol. 24, no. 12, pp. 1028–1040, 2020.

[12] T. Lesort, V. Lomonaco, A. Stoian, D. Maltoni, D. Filliat, and N. Dı́az-
Rodrı́guez, “Continual learning for robotics: Definition, framework,
learning strategies, opportunities and challenges,” Information fusion,
vol. 58, pp. 52–68, 2020.

[13] A. Gepperth and C. Karaoguz, “A bio-inspired incremental learning
architecture for applied perceptual problems,” Cognitive Computation,
vol. 8, no. 5, pp. 924–934, 2016.

[14] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “icarl:
Incremental classifier and representation learning,” in Proceedings of the
IEEE conference on Computer Vision and Pattern Recognition, 2017, pp.
2001–2010.

[15] D. Rolnick, A. Ahuja, J. Schwarz, T. Lillicrap, and G. Wayne, “Expe-
rience replay for continual learning,” Advances in Neural Information
Processing Systems, vol. 32, pp. 350–360, 2019.

[16] M. De Lange and T. Tuytelaars, “Continual prototype evolution: Learn-
ing online from non-stationary data streams,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2021, pp.
8250–8259.

[17] G. M. Van de Ven and A. S. Tolias, “Three scenarios for continual
learning,” arXiv preprint arXiv:1904.07734, 2019.

[18] R. Aljundi, L. Caccia, E. Belilovsky, M. Caccia, M. Lin, L. Charlin,
and T. Tuytelaars, “Online continual learning with maximally interfered
retrieval,” 2019. [Online]. Available: https://arxiv.org/abs/1908.04742

[19] D. Lopez-Paz and M. Ranzato, “Gradient episodic memory for continual
learning,” Advances in neural information processing systems, vol. 30,
pp. 6467–6476, 2017.

[20] A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny, “Efficient
lifelong learning with a-gem,” arXiv preprint arXiv:1812.00420, 2018.

[21] A. Chaudhry, M. Rohrbach, M. Elhoseiny, T. Ajanthan, P. K. Dokania,
P. H. Torr, and M. Ranzato, “On tiny episodic memories in continual
learning,” arXiv preprint arXiv:1902.10486, 2019.

[22] R. Aljundi, M. Lin, B. Goujaud, and Y. Bengio, “Gradient based
sample selection for online continual learning,” arXiv preprint
arXiv:1903.08671, 2019.

[23] A. Prabhu, P. H. Torr, and P. K. Dokania, “Gdumb: A simple approach
that questions our progress in continual learning,” in European confer-
ence on computer vision. Springer, 2020, pp. 524–540.

[24] T. L. Hayes, G. P. Krishnan, M. Bazhenov, H. T. Siegelmann, T. J.
Sejnowski, and C. Kanan, “Replay in deep learning: Current approaches
and missing biological elements,” Neural Computation, vol. 33, no. 11,
pp. 2908–2950, 2021.

[25] B. Bagus and A. Gepperth, “An investigation of replay-based approaches
for continual learning,” in 2021 International Joint Conference on
Neural Networks (IJCNN). IEEE, 2021, pp. 1–9.

[26] H. Shin, J. K. Lee, J. Kim, and J. Kim, “Continual learning with deep
generative replay,” arXiv preprint arXiv:1705.08690, 2017.

[27] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[28] N. Kamra, U. Gupta, and Y. Liu, “Deep generative dual memory network
for continual learning,” arXiv preprint arXiv:1710.10368, 2017.

[29] F. Lavda, J. Ramapuram, M. Gregorova, and A. Kalousis, “Contin-
ual classification learning using generative models,” arXiv preprint
arXiv:1810.10612, 2018.

[30] J. Ramapuram, M. Gregorova, and A. Kalousis, “Lifelong generative
modeling,” Neurocomputing, vol. 404, pp. 381–400, 2020.

[31] F. Ye and A. G. Bors, “Learning latent representations across multi-
ple data domains using lifelong vaegan,” in European Conference on
Computer Vision. Springer, 2020, pp. 777–795.

[32] H. Caselles-Dupré, M. Garcia-Ortiz, and D. Filliat, “S-trigger: Continual
state representation learning via self-triggered generative replay,” in 2021
International Joint Conference on Neural Networks (IJCNN). IEEE,
2021, pp. 1–7.

https://arxiv.org/abs/1908.04742

[33] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
Advances in neural information processing systems, vol. 27, 2014.

[34] O. Ostapenko, M. Puscas, T. Klein, P. Jahnichen, and M. Nabi, “Learning
to remember: A synaptic plasticity driven framework for continual
learning,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2019, pp. 11 321–11 329.

[35] L. Wang, K. Yang, C. Li, L. Hong, Z. Li, and J. Zhu, “Ordisco: Effective
and efficient usage of incremental unlabeled data for semi-supervised
continual learning,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 5383–5392.

[36] C. Atkinson, B. McCane, L. Szymanski, and A. Robins, “Pseudo-
rehearsal: Achieving deep reinforcement learning without catastrophic
forgetting,” Neurocomputing, vol. 428, pp. 291–307, 2021.

[37] C. Wu, L. Herranz, X. Liu, J. van de Weijer, B. Raducanu et al.,
“Memory replay gans: Learning to generate new categories without
forgetting,” Advances in Neural Information Processing Systems, vol. 31,
2018.

[38] F. Zhu, X.-Y. Zhang, C. Wang, F. Yin, and C.-L. Liu, “Prototype
augmentation and self-supervision for incremental learning,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021, pp. 5871–5880.

[39] L. Pellegrini, G. Graffieti, V. Lomonaco, and D. Maltoni, “Latent
replay for real-time continual learning,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2020, pp.
10 203–10 209.

[40] J. Kong, Z. Zong, T. Zhou, and H. Shao, “Condensed prototype replay
for class incremental learning,” arXiv preprint arXiv:2305.16143, 2023.

[41] T. L. Hayes, K. Kafle, R. Shrestha, M. Acharya, and C. Kanan, “Remind
your neural network to prevent catastrophic forgetting,” in European
Conference on Computer Vision. Springer, 2020, pp. 466–483.

[42] M. Y. Harun, J. Gallardo, T. L. Hayes, R. Kemker, and C. Kanan,
“Siesta: Efficient online continual learning with sleep,” arXiv preprint
arXiv:2303.10725, 2023.

[43] A. Gepperth and B. Pfülb, “Image modeling with deep convolutional
gaussian mixture models,” arXiv preprint arXiv:2104.12686, 2021.

[44] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[45] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

[46] G. Cohen, S. Afshar, J. Tapson, and A. Van Schaik, “Emnist: Extending
mnist to handwritten letters,” in 2017 international joint conference on
neural networks (IJCNN). IEEE, 2017, pp. 2921–2926.

[47] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and . y. Ng, “Reading
digits in natural images with unsupervised feature learning.”

[48] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[49] R. Kemker, M. McClure, A. Abitino, T. Hayes, and C. Kanan, “Mea-
suring catastrophic forgetting in neural networks,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.

[50] M. Mundt, S. Lang, Q. Delfosse, and K. Kersting, “Cleva-compass: A
continual learning evaluation assessment compass to promote research
transparency and comparability,” arXiv preprint arXiv:2110.03331,
2021.

[51] T. Lesort, A. Gepperth, A. Stoian, and D. Filliat, “Marginal replay vs
conditional replay for continual learning,” in International Conference
on Artificial Neural Networks. Springer, 2019, pp. 466–480.

[52] M. Riemer, I. Cases, R. Ajemian, M. Liu, I. Rish, Y. Tu, and G. Tesauro,
“Learning to learn without forgetting by maximizing transfer and
minimizing interference,” arXiv preprint arXiv:1810.11910, 2018.

[53] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola,
A. Maschinot, C. Liu, and D. Krishnan, “Supervised contrastive learn-
ing,” Advances in neural information processing systems, vol. 33, pp.
18 661–18 673, 2020.

[54] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin,
“Unsupervised learning of visual features by contrasting cluster assign-
ments,” Advances in neural information processing systems, vol. 33, pp.
9912–9924, 2020.

[55] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in International
conference on machine learning. PMLR, 2020, pp. 1597–1607.

[56] D. Dwibedi, Y. Aytar, J. Tompson, P. Sermanet, and A. Zisserman, “With
a little help from my friends: Nearest-neighbor contrastive learning of
visual representations,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 9588–9597.

[57] K. Sohn, “Improved deep metric learning with multi-class n-pair loss
objective,” Advances in neural information processing systems, vol. 29,
2016.

[58] A. Gepperth, “A new perspective on probabilistic image modeling,” in
International Joint Conference on Neural Networks(IJCNN), 2022.

[59] O. Ostapenko, T. Lesort, P. Rodriguez, M. R. Arefin, A. Douillard,
I. Rish, and L. Charlin, “Continual learning with foundation models: An
empirical study of latent replay,” in Conference on Lifelong Learning
Agents. PMLR, 2022, pp. 60–91.

[60] T. Chen, S. Kornblith, K. Swersky, M. Norouzi, and G. E. Hinton, “Big
self-supervised models are strong semi-supervised learners,” Advances
in neural information processing systems, vol. 33, pp. 22 243–22 255,
2020.

[61] J. Gallardo, T. L. Hayes, and C. Kanan, “Self-supervised training
enhances online continual learning,” arXiv preprint arXiv:2103.14010,
2021.

	Introduction
	Approach: AR
	Contributions
	Related Work

	Methods
	Adiabatic replay (AR)

	Experimental setup
	Data
	Evaluation metrics
	Scenarios for replay experiments

	Implementation details
	AR
	DGR
	ER
	Gen-MIR
	BI-R
	Use of pre-trained feature extractors
	Sequential Fine-Tuning (SFT)

	Experiments and results
	Selective replay functionality
	CIL comparison

	Discussion
	Conclusion
	Reproducibility

	References

