
CVPR
#41

CVPR
#41

CVPR 2024 Submission #41. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

An analysis of best-practice strategies for replay and rehearsal in continual
learning

Anonymous CVPR submission

Paper ID 41

Abstract

This study is in the context of class-incremental contin-001
ual learning using replay, which has seen notable progress002
in recent years, fueled by concepts like conditional, latent or003
maximally interfered reolay. However, there are many de-004
sign choices to take when it comes to implementing replay,005
with potentially very different outcomes in the various class-006
incremental scenarios. Some of the obvious design choices007
in generative replay are the use of experience replay (ER),008
the use of GANs –vs– VAEs, or whether to re-initialize gen-009
erators after each task. For replay strategies in general, it010
is an open question how many samples to generate for each011
new task, and what weights to give generated and new sam-012
ples in the loss. On top of this, there are many possible CL013
evaluation protocols differing in the amount of tasks, the014
balancing of tasks or fundamental complexity (e.g., MNIST015
-vs- latent CIFAR/SVHN), and thus few generic conclusions016
about best practices for replay/rehearsal have found con-017
sensus in the literature. This study aims at establishing such018
best-practices by conducting an extensive set of representa-019
tive replay experiments.020

1. Introduction021

This article is in the context of class-incremental contin-022
ual learning (CL), which is considered the most challeng-023
ing CL scenario among several others, see [47]. Class-024
incremental CL assumes that data non-stationarities take025
the form of abrupt switches between mutually exclusive026
tasks, see Fig. 1. One fundamental approach to tackle class-027
incremental CL is replay, which we take to mean the re-use028
of samples from previous tasks when tackling the current029
one. In experience replay, these samples are taken from a030
buffer that was populated during previous tasks, whereas in031
generative replay, they are produced by a generator trained032
during previous tasks.033

Replay approaches have known considerable success034
[49] and are actively evolving. Some of the recent addi-035

tions include latent replay [36], brain-inspired replay[48], 036
maximally interfered replay[1] and adiabatic replay [24]. 037

However, the design space of replay methods is large, 038
which is illustrated in Fig. 2, and it is not clear whether there 039
is a single best-practice strategy that can guide researchers 040
in all possible evaluation scenarios. We can identify several 041
fundamental axes for replay strategies in general, where we 042
omit the issue of using latent replay or not. Rather, we as- 043
sume that latent replay is used only for problems where it is 044
required. 045
• Number of samples to replay for each task 046
• Relative weighting new and generated samples 047
For generative replay, there are additional choices to make. 048
We believe that the consensus of the community is to use 049
class-conditional generators (see, e.g., [29, 30, 48]) so this 050
is not included here. Similarly, we do not include the choice 051
of a particular form for the involved DNNs, and rather as- 052
sume that they are chosen according to the characteristics 053
of the data they are applied to. 054
• Should generators be re-initialized after each task? 055
• What type of generator should be used, i.e., cVAE or 056

cGAN? 057
And finally, the chosen evaluation scenario is relevant: 058
• Number of tasks (small/large) 059
• Task balancing, i.e., do all tasks contain the same number 060

of classes? 061
• Fundamental difficulty of the CL problem (e.g., permuted 062

Data for T1 Data for T2 Data for T3

 task T1 task T2 task T3

...
Labels for T1 Labels for T2Labels for T1 Labels for T1

Figure 1. Class-incremental learning, consisting of distinct tasks
that contain data from pairwise disjoint classes. Please note that
not all tasks need contain the same number of classes.

1

CVPR
#41

CVPR
#41

CVPR 2024 Submission #41. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

1 2 3 4 A B10 2 3 4

task Ti

rehearsal

,,,

solver

train / reset+train / store

train
new

samples

replayed
samples

Figure 2. A general depiction of replay approaches, regardless of
whether a generator or a buffer is used. For the purposes of this
study, we have also shown the different weights wi,R and wi,M
that real and replayed samples can be assigned in the loss at task i.

MNIST –vs– CIFAR)063
The common evaluation scenario seems to be what is usu-064
ally termed split-MNIST and which we denote as D2-24,065
generalized to other 10-class datasets. In D2-24 CL prob-066
lems, the 10 classes are grouped into five tasks of two067
classes each. Obviously, other tasks can be constructed068
from 10-class datasets, such as, e.g., D6-14 or D1-19 which069
is another common (but less often used) CL benchmark. In070
any case, most works assume that the number of classes per071
task is constant and known, which is an assumption that we072
relax in some of the evaluation of this article.073

1.1. Related Work074

Many recent works perform comparison studies [11, 32, 48]075
between different approaches to CL. However, when it076
comes to rehearsal, no unified view exists w.r.t. various077
design choices to make. Constant-time rehearsal is used078
in several studies, combined with weights for replayed and079
new samples. In some studies [1], weights for replayed080
samples are chosen by cross-validation, whereas heuristics081
based on the number of previously seen tasks are used in082
others [48]. An extensive experimental evaluation of differ-083
ent generator types was performed in [30], with the result084
that conditional generators are advantageous and that GANs085
are more suitable than VAEs, although it is not clear how086
the various parameters were tuned in this study. Although it087
is rarely indicated in the articles, generators are usually re-088
initialized after each task, whereas [48] argues for keeping089
generators since ”preventing forgetting is easier than learn-090
ing”. To the best of our knowledge, no recent study exists091
which systematically assesses the performance of rehearsal092
methods for all of the more common design choices.093

1.2. Contributions094

This article is the first study to systematically compare dif-095
ferent commonly used replay approaches on a wide variety096
of datasets and dataset splits for continual learning, includ-097
ing the important aspect of latent replay. Based on these in-098
vestigations, we provide guidelines for using replay-based099
approaches to continual learning.100

2. Methods 101

2.1. Feature encoding 102

The training of generative models on complex datasets like 103
SVHN and CIFAR-10 is still challenging [1, 29]. Hence, 104
the use of feature extractors has become a principled ap- 105
proach to deal with this limitation [19, 31, 35, 36, 48]. This 106
study relies upon supervised contrastive learning (SCL) 107
[21] based on SimCLR [8] to build a fixed feature extractor 108
to tackle more complex data distributions. Usually, in con- 109
trastive learning, the encoding network is trained on large 110
datasets such as ImageNet [42], but our empirical studies 111
have shown that the extracted features might not be benefi- 112
cial for every scenario, but ultimately depends on the com- 113
patibility between the source and target domain. While it 114
might work for e.g., generalizing features from CIFAR-10 115
and use them for CL training on CIFAR-100 as shown in 116
[48], at the same time they might be insufficient for SVHN 117
and vice versa. We reserve a fixed portion of the origi- 118
nal dataset for SCL and exclude these instances from be- 119
ing used for downstream CL, thus the data used for pre- 120
training is identical but not the same. A ResNet-50 with ran- 121
domly initialized weights is used as the encoding backbone 122
and trained for 256 epochs with a mini-batch size of 256. 123
Each incoming data instance is normalized and augmented 124
by performing a random horizontal flipping and rotation in 125
the range of −2% ∗ 2π − +2% ∗ 2π. The final pooling 126
layer outputs a representation vector with the dimensional- 127
ity D = (1, 1, 2048). The attached projection head consists 128
of two fully-connected layers with 2048 and 128 units re- 129
spectively using ReLU activation. The n-pairs multi-class 130
loss [44] is used with a temperature of 0.05 and optimized 131
with ADAM using ϵ = 0.001, β1 = 0.9 and β2 = 0.999. 132
In our experiments, the datasets are transformed prior to CL 133
training, however, an ”on-the-fly” encoding is also feasible 134
at the mini-batch or sub-task level, albeit with poorer run- 135
time efficiency. 136

2.2. CL strategies 137

Experience replay (ER) uses reservoir sampling as de- 138
scribed in [41], storing 50 samples per encountered class. 139
The time and space complexity is thus constant with re- 140
spect to the number of classes, even if CL breaks down 141
here at some point when the number of tasks becomes large 142
enough. The ER solver consists of 3 fully-connected layers 143
with 512 units and ReLU activation followed by a softmax 144
output layer. 145

Deep generative replay (DGR) utilizes cVAEs [22, 45] 146
and GANs [16], whereas the latter is either implemented 147
as a vanilla GAN (cGAN) [33] or by using the Wasserstein 148
distance [3] combined with gradient penalty [17] (WGAN- 149
GP). VAEs use a latent dimension z of 100 and a disentan- 150
gling factor of β = 1.0, while GANs use a noise dimen- 151

2

CVPR
#41

CVPR
#41

CVPR 2024 Submission #41. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

sion z of 100. WGAN-GP uses a gradient penalty weight152
of 10 and performs three discriminator iterations per gen-153
erator iteration. Both, VAEs and GANs are conditioned154
on the label space by concatenating the output of the la-155
bel input mapped to a fully connected layer with units ei-156
ther matching the data dimension (cVAE encoder/decoder157
and cGAN discriminator) or noise dimension (cGAN gen-158
erator). The VAE encoder consists of two fully-connected159
layers with 2048 units and ReLU activation, followed by a160
split output head for the mean vector and logarithmic vari-161
ance. The decoder is composed of a dense layer chain us-162
ing ReLU with 128-512-1024 units and a 2048-dimensional163
output layer with sigmoid activation. The GAN genera-164
tor is composed of two fully connected layers with 2048165
units each and an output layer with sigmoid activation. For166
cGAN and WGAN-GP each dense layer is followed by a167
batch normalization layer and LeakyReLU with α = 0.2.168
The Discriminator uses two dense layers with 512 and 256169
units followed by LeakyReLU with α = 0.2 and Dropout170
with a rate of 0.3. DGR solvers share the same architecture171
as the solver used for ER while using the ADAM optimizer172
with a learning rate of 1e−3 and β1 = 0.9, β2 = 0.999. The173
learning rate for cVAE encoders and decoders is set to 1e−4174
with β1 = 0.9, β2 = 0.999. While cGAN and WGAN-GP175
use a learning rate of 5e−4 with β1 = 0.5, β2 = 0.999 us-176
ing the ADAM optimizer. Generators and the ER solver are177
trained for 100 epochs per task and a mini-batch size of 128.178
DGR solvers are trained for an additional 50 epochs after179
generator training. We additionally investigate the effect of180
re-initializing generators before each new task, as opposed181
to keeping the same structure (warm-start) for consecutive182
training.183

2.3. Replay strategies184

This study focuses on three distinct approaches to replay:185
balanced, constant and weighted. For the current training186
task i > 1, let Mi denote the currently replayed samples187
(either from a buffer or using a generator), Ri the current188
(real) task data, and βij a training mini-batch which is uni-189
formly sampled from Ri ∪ Mi (see also Fig. 2). Further,190
we define a parameter χM that defines the proportion of191
replayed samples at each task, therefore also defining the192
proportion of replayed samples in each training mini-batch:193

χM =
|Mi|

|Ri|+ |Mi|
, χR = 1− χM. (1)194

The balanced strategy ensures a linear scaling of Ri w.r.t.195
previously encountered classes. Denoting the number of196
classes for each task j as Nj , we can ensure that amount197
of samples from each class in all mini-batches βij is identi-198

cal by choosing: 199

χM =

∑i−1
j=1 Nj∑i
j=1 Nj

(2) 200

The constant strategy generates an amount of samples iden- 201
tical to the amount of samples in Ri. Here, storage con- 202
sumption and re-training time is bounded, and χM is set to 203
0.5. There are works which replay a constant number of 204
samples regardless of the size of Ri, which however im- 205
plicitly assumes that all tasks contain the same amount of 206
samples. Please note that classes will generally be unbal- 207
anced in each mini-batch for this strategy. 208

The weighted strategy is a direct extension to the constant 209
strategy, which implements an additional mechanism to en- 210
sure balancing. This approach is inspired by [48] and uses 211
distinct weights wi,R for real samples and wi,M for gen- 212
erated ones, which are applied to the loss function L to 213
offset imbalances. Here, the loss is split into two parts: 214
LR and LM computed from real and generated samples, 215
respectively (see also Fig. 2). In its original formulation 216
the calculation of these balancing coefficients is based on 217
the amount of encountered tasks, which we will refer to as 218
task-weighted loss weights (see Eq. (3)). We additionally 219
added an adaptation based on class counts, which we term 220
class-weighted loss weights (see Eq. (4)). Assuming that the 221
amount of samples per class is roughly similar, we compute 222
these weights according to: 223

L = wi,RLR + wi,MLM =
1

i
LR +

i− 1

i
LM (3) 224

225

L = wi,RLR+wi,MLM =
1∑i

j=1 Nj

LR+
Ni∑i
j=1 Nj

LM.

(4) 226
For generative replay, loss weighting is applied to both the 227
generator and solver losses. 228

3. Experiments 229

3.1. Evaluation protocol 230

Usually CIL is investigated in an artificially composed set- 231
ting where tasks share the same amount of classes per task 232
which results in approximately evenly balanced composi- 233
tions [2, 30, 40, 43, 50]. We argue that this assumption 234
seems highly unrealistic for real world learning scenarios, 235
since novel additions to a persistent knowledge base should 236
diminish and fluctuate over the course of facing a multitude 237
of separate training sessions. We share the idea that arti- 238
ficial CIL scenarios, despite their usability for prototypical 239
evaluation, should be adapted and expanded [10]. We aim 240
to extend common CL benchmarks towards a more sophis- 241
ticated CIL evaluation protocol to use for future research in 242

3

CVPR
#41

CVPR
#41

CVPR 2024 Submission #41. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

this area. Still, some relaxation has to be accepted in order243
to enable tractable experimentation, replay is investigated244
assuming known task-boundaries and disjoint classes, while245
it is assumed that data from all tasks occurs with equal prob-246
ability. Data is normalized to a range of [0, 1] and randomly247
shuffled. We perform a two-staged training, with an initial248
run on T1 and a sequence of replay runs Ti, i > 1. Fur-249
ther, we allow no information about tasks in advance, ex-250
cept for the knowledge of present classes and the amount of251
samples per incoming task. This study investigates three di-252
rections for task composition to model CIL-problems (CP)253
Tab. 1. We divide them into: usual problems (U-CP), com-254
monly found in CIL literature (e.g. D5-5, D2-24, D1-19),255
and the more imbalanced, diminishing (D-CP) and alter-256
nating problems (A-CP). With the latter two showing an257
distinctive approach to model variance in task composition.258
D-CP reflects a decline in the amount of novel data over the259
course of training, while A-CP models a constant change260
in the number of arriving class additions to the knowledge261
base. Classes per task are randomly selected once and fix-262
ated throughout experimentation.

dataset↓
split ↓ MNIST / F-MNIST

E-MNIST
SVHN / CIFAR10

U-CP1 D5-5 /
U-CP2 D2-24 /
U-CP3 D1-19 /
D-CP1 D4-3-2-1 D20-110

D-CP2 D5-15 /
A-CP1 / D2-10-3-10-5
A-CP2 / D10-2-10-3-10

Table 1. This table shows all task compositions evaluated in the
empirical study. A composition consists of a sequence of classes,
whereas each number indicates the total amount of classes encoun-
tered in each separate training phase. D2-24 shall be interpreted as
2-2-2-2-2 and thus has a total of 5 tasks with 2 classes each.

263

3.2. Data264

MNIST [26] consists of 60.000 28× 28 grayscale images265
of handwritten digits (0-9).266

Fashion-MNIST [51] consists of 60.000 images of clothes267
in 10 categories and is structured like MNIST.268

E-MNIST [9] is an extended version of MNIST and con-269
tains additional letters. A total of 131.000 samples are bal-270
anced across 47 classes, and thus allows to model a CL271
problem where the amount of already acquired knowledge272
can be significantly larger than the amount of new data273
added with each successive task.274

SVHN [34] contains 60.000 RGB images of house numbers275
(0-9, resolution 32× 32). This dataset is imbalanced, as276
classes 1 and 2 are overrepresented, while classes 0 and 9277
are underrepresented.278

CIFAR-10 [25] contains 60.000 RGB images of natural ob- 279
jects, resolution 32x32, in 10 balanced classes. 280
Feature encoding was used for SVHN and CIFAR-10 with 281
a pre-trained feature-extractor to reduce the complexity of 282
the data as discussed in Sec. 2.1. For SVHN, we take half of 283
the extra split, while we divide the CIFAR10 training split 284
in half, reserving one part for pre-training and the other for 285
downstream CL. No encoding was performed for MNIST, 286
FashionMNIST and E-MNIST. 287

3.3. Evaluation metrics 288

The accuracy αij of a solver Si after each training phase 289
Tj , 1, . . . , j is evaluated on a corresponding held-out test 290
set. The final accuracy αend is evaluated on a joint test set 291
composed from samples of all present classes, and reported 292
after training on the complete task sequence. For compar- 293
ison, we also provide the joint-training performance αbase, 294
achieved by a default solver on the union of all classes from 295
each distinct dataset. To measure CL capacity we define 296
forgetting Fij , as an averaged value over all tasks FT which 297
is defined as follows: 298

Fij = max
i∈{1,..,T−1}

αij − αTj , ∀j < T. 299

FT =
1

T − 1

T−1∑
j=1

FTj , FT ∈ [0, 1]. (5) 300

3.4. Results 301

The experiments are conducted on a cluster of 25 machines 302
equipped with single RTX3070Ti GPUs. Five randomly ini- 303
tialized runs were performed for all configurations on the 304
task compositions showcased in Tab. 1. We also offer a pub- 305
licly available TensorFlow2 implementation 1. The results 306
are presented in the following order: First, a comprehensive 307
comparison of the investigated CL methods from Sec. 2.2 308
in their unmodified version in a memory-constrained (con- 309
stant) scenario is presented to investigate the impact of dif- 310
ferent datasets and task splits (see Sec. 3.1). Next, the im- 311
pact of applying the proposed replay modifications as de- 312
scribed in Sec. 2.3 is assessed and a final evaluation of re- 313
setting and reusing generators for DGR is performed. 314
Evaluation of the memory-constrained scenario for un- 315
modified CL methods are displayed in Tab. 2. We’ve iden- 316
tified CVAEs to be most effective on MNIST and Fashion- 317
MNIST for almost every investigated task split, while ER 318
performs stronger on encoded features. GAN-based DGR 319
shows the weakest results across all datasets, especially 320
having difficulties with longer task sequences and sequen- 321
tially learning the latent feature representations. Addition- 322
ally, conditional GANs regularly suffer from major conver- 323
gence problems and mode collapse [39, 46], especially on 324

1The code and instructions to reconstruct the experiments can be found
under the following link

4

https://github.com/anonymous

CVPR
#41

CVPR
#41

CVPR 2024 Submission #41. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

method↓
ER CVAE CGAN WGAN-GP

M
N

IS
T

/F
-M

N
IS

T

U-CP1 .85 ±.01 / .27 .97 ±.00 / .03 .93 ±.01 / .11 .95 ±.01 / .08
.71 ±.01 / .47 .78 ±.01 / .34 .64 ±.01 / .61 .69 ±.01 / .52

U-CP2 .76 ±.01 / .05 .93 ±.00 / .08 .20 ±.01 / 1.0 .88 ±.01 / .14
.60 ±.04 / .49 .63 ±.03 / .44 .48 ±.01 / .63 .44 ±.01 / .69

U-CP3 .15 ±.11 / .64 .83 ±.01 / .19 .10 ±.01 / 1.0 .70 ±.06 / .32
.37 ±.03 / .81 .67 ±.04 / .41 .20 ±.19 / .91 .54 ±.03 / .51

D-CP1 .86 ±.01 / .10 .95 ±.01 / .03 .10 ±.00 / .49 .93 ±.00 / .05
.64 ±.01 / .20 .66 ±.04 / .18 .55 ±.03 / .25 .59 ±.00 / .23

D-CP2 .84 ±.00 / .21 .91 ±.00 / .07 .57 ±.40 / .47 .83 ±.05 / .10
.69 ±.01 / .36 .65 ±.01 / .27 .51 ±.06 / .40 .50 ±.04 / .33

SV
H

N
/C

IF
A

R
10

U-CP1 .81 ±.03 / .25 .68 ±.04 / .49 .45 ±.00 / .94 .56 ±.05 / .72
.62 ±.01 / .40 .54 ±.02 / .63 .40 ±.01 / .87 .44 ±.02 / .79

U-CP2 .78 ±.03 / .26 .54 ±.05 / .53 .15 ±.00 / .98 .35 ±.03 / .78
.62 ±.02 / .36 .44 ±.03 / .53 .19 ±.01 / .93 .39 ±.03 / .79

U-CP3 .56 ±.40 / .39 .43 ±.05 / .60 .06 ±.00 / 1.0 .30 ±.01 / .72
.38 ±.25 / .63 .34 ±.03 / .71 .10 ±.01 / 1.0 .28 ±.04 / .78

D-CP1 .82 ±.00 / .11 .56 ±.04 / .28 .09 ±.01 / .48 .41 ±.05 / .41
.60 ±.02 / .16 .42 ±.03 / .27 .10 ±.00 / .43 .36 ±.05 / .34

D-CP2 .75 ±.09 / .26 .58 ±.01 / .43 .20 ±.00 / .99 .44 ±.01 / .61
.65 ±.01 / .32 .36 ±.04 / .57 .10 ±.00 / .97 .32 ±.02 / .67

E
-M

N
IS

T D-CP1 .64 ±.02 / .47 .44 ±.03 / .34 .21 ±.15 / .70 .22 ±.01 / .37
A-CP1 .54 ±.03 / .52 .71 ±.02 / .36 .17 ±.01 / .96 .59 ±.03 / .47
A-CP2 .64 ±.02 / .47 .63 ±.02 / .45 .55 ±.03 / .52 .55 ±.03 / .52

MNIST F-MNIST SVHN CIFAR-10 E-MNIST1 E-MNIST2 E-MNIST3

.98 .88 .92 .75 .89 .89 .88

Table 2. Experimental results. Upper table Shows the results
for all investigated CL methods in their unmodified settings while
following the constant replay scenario (see Sec. 3.1). We present
the final test-set accuracy αend followed by average forgetting Fend

for each CIL problem presented in Tab. 1. Lower table The joint-
training baselines for all datasets. We’ve used the solver network
as described in Sec. 2.2 trained for 100 epochs as the classification
model. E-MNIST1/2/3 refer to the joint class sets as apparent in
D-CP1, A-CP1 and A-CP2. All results are averaged across N = 5
runs.

encoded SVHN and CIFAR-10. Although, WGANs with325
GP show competitive results when directly compared to326
CVAEs, they come with the major drawback of increased327
training time. An epoch of generator training on U-CP3 for328
SVHN takes 25 seconds per epoch for CVAE, 52s/epoch for329
CGAN and 90s/epoch for WGAN-GP. Regarding the usage330
of common CIL task splits, we have identified problems like331
U-CP1 (5-5) as vacuous to evaluate in this context due to332
the low number of individual replay training sessions and333
the inherent balance in terms of the set of classes that each334
task represents. We also observe this to some extent for335
longer and equally balanced task sequences like U-CP2 (2-336
24) and U-CP3 (1-19), as long as the initial capacity of the337
buffer or generator allows to capture the data somewhat ef-338
fectively. This is reflected by the small margin in terms of339
accuracy and forgetting between U-CP2 and U-CP3 despite340
the latter objective doubling the amount of sequential learn-341

ing tasks. Additionally, DGR-CVAE for example, reaches 342
a similar performance for D-CP1 (3 tasks and 10 classes 343
in total) as for U-CP3 (10 tasks and 10 classes in total). 344
We also observe that all CL methods struggle to reach sat- 345
isfactory results on tasks compositions where the amount 346
of new data to learn diminishes steadily over the course of 347
a growing number of learning experiences, as can be seen 348
for E-MNIST D-CP1 (20-110). We’ve also gathered more 349
interesting results, like e.g., the poor performance of ER 350
on MNIST/F-MNIST U-CP3. Here, the final accuracy is 351
far off from our expectation, which again shows that mi- 352
nor changes in the evaluation protocol, such as randomized 353
class orders, may show very different results than usually 354
found in the literature. 355
Results for the application of proposed replay modifica- 356
tions can be found in Fig. 3, which showcases an compre- 357
hensive overview over their benefits for CL training. The 358
corresponding values for forgetting can be found in Sec. 6 359
Fig. 4. For ER, an explicit loss weighting has shown to 360
be beneficial especially considering longer task sequences. 361
However, we mostly couldn’t distinguish a significant dif- 362
ference between the resulting performance of weighting on 363
a class basis – versus – weighting on a task basis except 364
for E-MNIST D-CP1 where balancing the loss coefficients 365
based on the class count outperforms the weighting strategy 366
based on the number of tasks, a training on longer task se- 367
quences like D20-120 could amplify this effect even more. 368
For DGR-based rehearsal, we identified the balanced sce- 369
nario as the most stable one, achieving the highest accuracy 370
and least forgetting during replay training. While there are 371
definitely some cases where explicit loss-weighting might 372
be on par with a balancing strategy, these rare cases seem to 373
occur very rarely or for task splits where the replay strategy 374
has no significant influence (e.g. U-CP1). 375
Re-using or re-starting generators does not make much 376
difference, as described by Fig. 3 (e.) and (f.). We found 377
only marginal increases and decreases in accuracy and for- 378
getting across all experiment groups, which may be due to 379
statistical regularities. 380

4. Discussion 381

Construction of proper CIL evaluation protocols: The 382
use of simplified benchmarks without the use of full-fledged 383
protocols can mask the weaknesses of replay methods in 384
CL. We have identified some criteria to consider in a CIL 385
scenario. More interesting benchmarks should include long 386
task sequences within a limited computational and memory 387
budget, as discussed in [14]. However, we have empirically 388
confirmed that the length of the task sequence alone is not a 389
clear indicator of the overall complexity of an objective, but 390
rather must be considered as one piece of the puzzle when 391
constructing appropriate CIL benchmarks. We assume that 392
the mixture of the total amount of samples/classes, their 393

5

CVPR
#41

CVPR
#41

CVPR 2024 Submission #41. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) Absolute accuracy (warm-start). (b) Accuracy normalized over each column vector (warm-start).

(c) Absolute accuracy (generator reset). (d) Accuracy normalized over each column vector (generator reset).

(e) Difference in absolute accuracy between (c.) and (a.). (f) Difference in normalized accuracy between (c.) and (a.).

Figure 3. This illustration showcases the final accuracy αend for all investigated datasets/splits. Each column represents a distinct task split
on each dataset, whereas the first letter (”M”, ”F”, ”S”, ”C” stands for MNIST, Fashion-MNIST, SVHN and CIFAR-10), followed by an
task split descriptor from Tab. 1. The deployed CL methods (4 groups * N rows) were modified as explained in Sec. 2.3: const. = constant,
balan. = balanced (DGR exclusive), lw-cls. = loss-weighting by class count, lw-tsk. = loss-weighting by task count. The results for ER
(top-most three rows) are re-used and serve as a baseline for the results in (c.-f.).

temporal occurrence and balancing in each training phase,394
as well as the resulting interference between already cap-395
tured and newly arriving data statistics are of central im-396
portance and must be considered holistically. We therefore397
argue for the introduction of a meaningful CIL evaluation398
that takes these points into account, rather than relying on399
some common but often uninformative CIL problems used400
in the literature just for convenience. What we have not yet401
constructed is a natural imbalance for the number of sam-402
ples per class, which would be a nice addition to extend our403
experiments. Furthermore, an aspect such as natural repe-404
tition [10] would be a nice addition to the diminishing and405
alternating splits to render a CIL problem more realistically.406

An efficient knowledge adaptation is required here, and the 407
CL method has to be able to deal with repetitive patterns 408
from a previous distribution while encountering new data 409
to add to its knowledge base. The experimental evaluation 410
also showed that the task order plays an important role in 411
the evaluation, see e.g. ER on Fig. 3a M: U-CP3. These 412
results are far from the results of other empirical studies on 413
exactly the same split [4]. This could be due to the fact that 414
the solver’s parameter set θT at the end of training resides 415
in the same low-loss region of the first task, since the same 416
network is reused and not reinitialized, in contrast to e.g., 417
GDumb [37]. This should underline the need for stronger 418
randomization and its crucial role in creating meaningful 419

6

CVPR
#41

CVPR
#41

CVPR 2024 Submission #41. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

CIL experiments. We also make a more practical reference420
to a real-time application with splits such as D-CP1, D-CP2421
and A-CP1, A-CP2, since a CL model will eventually reflect422
accumulated knowledge about a larger corpus of previously423
collected data and therefore needs to be able to adapt to the424
assumption that new data will only represent a small frac-425
tion of the total knowledge.426

Identifying efficient generators for replay: Since fac-427
tors such as memory consumption and a limited compute428
budget of CL methods are undeniably important metrics429
[12, 18, 38], we should not be guided solely by the result-430
ing accuracy when evaluating the usability of a method. We431
find that conditional VAEs are the best-performing gener-432
ative model in the context of the replay efficiency and re-433
sulting solver accuracy for DGR, as CGANs often suffer434
from mode collapse [5, 39, 46], while WGANs with GP are435
slower by a factor of three during training. When combining436
generative models with the presented replay strategies, we437
identified the balanced scenario as the best performing one.438
This is in line with the views of [30], where it was observed439
that to ensure a balanced distribution of classes, the number440
of generated samples must be rescaled linearly with respect441
to the number of tasks to ensure stable generators. How-442
ever, this approach is accompanied by a worse runtime and443
a higher consumption of intermediate memory to compen-444
sate for the loss of knowledge. It would also be interesting445
to investigate whether there is a perfect timing for replaying446
certain aspects of the data as discussed in [23], and combine447
this with a dynamically balanced replay mechanism, as this448
could also reduce the reliance on sharp task boundaries to449
trigger generator re-training, which is a serious limitation in450
any streaming data setup.451

The use of latent replay: Pre-trained (PT) models can be452
advantageous for several replay methods, and these advan-453
tages can vary greatly from algorithm to algorithm, while454
furthermore there appears to be different behavior for dif-455
ferent types of PT models used [27]. Generative models are456
still limited in their capacity to model more complex distri-457
butions [2, 28] and therefore rely on PT models to be use-458
ful for datasets like SVHN and CIFAR-10/100. Our study459
uses supervised contrastive learning on the same data do-460
main, but this could also be adapted to the self-supervised461
learning paradigm to better fit a real CL setting [6, 7, 13].462
Empirical studies have already shown that PT models can463
be combined with CL algorithms and applied to incremen-464
tal batch learning [15] as well as to learning from streaming465
data [20].466

5. Conclusion and take-home messages467

The present study could be extended in several direction,468
mainly by varying more hyper-parameters, such as number469
of training epochs or generator/solver structure. Based on470

the presented results, we can formulate the following take- 471
home messages for CL practitioners: 472

Balanced replay performs best This is observable across 473
virtually all dataset splits and generative replay methods 474
(WGAN and CVAE), but is most apparent for unbalanced 475
task splits. The other weighting schemes we tested can be 476
competitive for some datasets, but perform generally worse. 477

Warm-starting is feasible but not required Although 478
warm-starting can considerably improve convergence time, 479
the final accuracies do not seem to depend on this choice at 480
all. 481

ER is competitive for latent replay Although ER does not 482
show the best performance for simple datasets, it excels 483
when latent data are replayed. This is presumably since la- 484
tent features are harder to model by generative models, and 485
the replay of real samples gives an advantage. 486

Use CVAEs as generators Although generators based on 487
WGAN-GP can be competitive (but not superior), they suf- 488
fer from very long training times and the need to tune the 489
number of training epochs via cross-validation which is in 490
principle inadmissible. For CVAEs, early-stopping can be 491
used since they minimize a loss function, which GANs do 492
not. 493

References 494

[1] Rahaf Aljundi, Lucas Caccia, Eugene Belilovsky, Massimo 495
Caccia, Min Lin, Laurent Charlin, and Tinne Tuytelaars. On- 496
line continual learning with maximally interfered retrieval, 497
2019. 1, 2 498

[2] Rahaf Aljundi, Lucas Caccia, Eugene Belilovsky, Massimo 499
Caccia, Min Lin, Laurent Charlin, and Tinne Tuytelaars. On- 500
line continual learning with maximally interfered retrieval, 501
2019. 3, 7 502

[3] Martin Arjovsky, Soumith Chintala, and Léon Bottou. 503
Wasserstein generative adversarial networks. In Interna- 504
tional conference on machine learning, pages 214–223. 505
PMLR, 2017. 2 506

[4] Benedikt Bagus and Alexander Gepperth. An investiga- 507
tion of replay-based approaches for continual learning. In 508
2021 International Joint Conference on Neural Networks 509
(IJCNN), pages 1–9. IEEE, 2021. 6 510

[5] David Bau, Jun-Yan Zhu, Jonas Wulff, William Peebles, 511
Hendrik Strobelt, Bolei Zhou, and Antonio Torralba. Seeing 512
what a gan cannot generate. In Proceedings of the IEEE/CVF 513
International Conference on Computer Vision, pages 4502– 514
4511, 2019. 7 515

[6] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi- 516
otr Bojanowski, and Armand Joulin. Unsupervised learning 517
of visual features by contrasting cluster assignments. Ad- 518
vances in neural information processing systems, 33:9912– 519
9924, 2020. 7 520

[7] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge- 521
offrey Hinton. A simple framework for contrastive learning 522
of visual representations. In International conference on ma- 523
chine learning, pages 1597–1607. PMLR, 2020. 7 524

7

CVPR
#41

CVPR
#41

CVPR 2024 Submission #41. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[8] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad525
Norouzi, and Geoffrey E Hinton. Big self-supervised mod-526
els are strong semi-supervised learners. Advances in neural527
information processing systems, 33:22243–22255, 2020. 2528

[9] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre529
Van Schaik. Emnist: Extending mnist to handwritten letters.530
In 2017 international joint conference on neural networks531
(IJCNN), pages 2921–2926. IEEE, 2017. 4532

[10] Andrea Cossu, Gabriele Graffieti, Lorenzo Pellegrini, Da-533
vide Maltoni, Davide Bacciu, Antonio Carta, and Vincenzo534
Lomonaco. Is class-incremental enough for continual learn-535
ing?, 2021. 3, 6536

[11] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah537
Parisot, Xu Jia, Aleš Leonardis, Gregory Slabaugh, and538
Tinne Tuytelaars. A continual learning survey: Defying for-539
getting in classification tasks. IEEE transactions on pattern540
analysis and machine intelligence, 44(7):3366–3385, 2021.541
2542

[12] Natalia Dı́az-Rodrı́guez, Vincenzo Lomonaco, David Filliat,543
and Davide Maltoni. Don’t forget, there is more than for-544
getting: new metrics for continual learning. arXiv preprint545
arXiv:1810.13166, 2018. 7546

[13] Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre547
Sermanet, and Andrew Zisserman. With a little help from my548
friends: Nearest-neighbor contrastive learning of visual rep-549
resentations. In Proceedings of the IEEE/CVF International550
Conference on Computer Vision, pages 9588–9597, 2021. 7551

[14] Sebastian Farquhar and Yarin Gal. Towards robust evalua-552
tions of continual learning, 2019. 5553

[15] Jhair Gallardo, Tyler L Hayes, and Christopher Kanan.554
Self-supervised training enhances online continual learning.555
arXiv preprint arXiv:2103.14010, 2021. 7556

[16] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing557
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and558
Yoshua Bengio. Generative adversarial nets. Advances in559
neural information processing systems, 27, 2014. 2560

[17] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent561
Dumoulin, and Aaron Courville. Improved training of562
wasserstein gans, 2017. 2563

[18] Md Yousuf Harun, Jhair Gallardo, Tyler L. Hayes, and564
Christopher Kanan. How efficient are today’s continual565
learning algorithms?, 2023. 7566

[19] Tyler L. Hayes, Kushal Kafle, Robik Shrestha, Manoj567
Acharya, and Christopher Kanan. Remind your neural net-568
work to prevent catastrophic forgetting, 2020. 2569

[20] Dapeng Hu, Shipeng Yan, Qizhengqiu Lu, Lanqing Hong,570
Hailin Hu, Yifan Zhang, Zhenguo Li, Xinchao Wang, and571
Jiashi Feng. How well does self-supervised pre-training per-572
form with streaming data? arXiv preprint arXiv:2104.12081,573
2021. 7574

[21] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna,575
Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and576
Dilip Krishnan. Supervised contrastive learning. Advances577
in neural information processing systems, 33:18661–18673,578
2020. 2579

[22] Diederik P Kingma and Max Welling. Auto-encoding varia-580
tional bayes. arXiv preprint arXiv:1312.6114, 2013. 2581

[23] M Klasson, H Kjellström, and C Zhang. Learn the time to 582
learn: Replay scheduling in continual learning. Transactions 583
on Machine Learning Research, 9, 2023. 7 584

[24] Alexander Krawczyk and Alexander Gepperth. Adiabatic 585
replay for continual learning, 2023. 1 586

[25] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple 587
layers of features from tiny images. 2009. 4 588

[26] Yann LeCun, Bernhard Boser, John Denker, Donnie Hen- 589
derson, Richard Howard, Wayne Hubbard, and Lawrence 590
Jackel. Handwritten digit recognition with a back- 591
propagation network. Advances in neural information pro- 592
cessing systems, 2, 1989. 4 593

[27] Kuan-Ying Lee, Yuanyi Zhong, and Yu-Xiong Wang. Do 594
pre-trained models benefit equally in continual learning?, 595
2022. 7 596

[28] Timothée Lesort, Hugo Caselles-Dupré, Michael Garcia- 597
Ortiz, Andrei Stoian, and David Filliat. Generative models 598
from the perspective of continual learning, 2018. 7 599

[29] Timothée Lesort, Hugo Caselles-Dupré, Michael Garcia- 600
Ortiz, Andrei Stoian, and David Filliat. Generative models 601
from the perspective of continual learning. In 2019 Interna- 602
tional Joint Conference on Neural Networks (IJCNN), pages 603
1–8. IEEE, 2019. 1, 2 604

[30] Timothée Lesort, Alexander Gepperth, Andrei Stoian, and 605
David Filliat. Marginal replay vs conditional replay for con- 606
tinual learning. In International Conference on Artificial 607
Neural Networks, pages 466–480. Springer, 2019. 1, 2, 3, 608
7 609

[31] Zheda Mai, Ruiwen Li, Hyunwoo Kim, and Scott Sanner. 610
Supervised contrastive replay: Revisiting the nearest class 611
mean classifier in online class-incremental continual learn- 612
ing, 2021. 2 613

[32] Marc Masana, Xialei Liu, Bartlomiej Twardowski, Mikel 614
Menta, Andrew D Bagdanov, and Joost van de Weijer. Class- 615
incremental learning: survey and performance evaluation 616
on image classification. arXiv preprint arXiv:2010.15277, 617
2020. 2 618

[33] Mehdi Mirza and Simon Osindero. Conditional generative 619
adversarial nets. arXiv preprint arXiv:1411.1784, 2014. 2 620

[34] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis- 621
sacco, Bo Wu, and Andrew Y Ng. Reading digits in natural 622
images with unsupervised feature learning. 2011. 4 623

[35] Oleksiy Ostapenko, Timothee Lesort, Pau Rodrı́guez, 624
Md Rifat Arefin, Arthur Douillard, Irina Rish, and Laurent 625
Charlin. Continual learning with foundation models: An em- 626
pirical study of latent replay, 2022. 2 627

[36] Lorenzo Pellegrini, Gabriele Graffieti, Vincenzo Lomonaco, 628
and Davide Maltoni. Latent replay for real-time continual 629
learning. In 2020 IEEE/RSJ International Conference on In- 630
telligent Robots and Systems (IROS), pages 10203–10209. 631
IEEE, 2020. 1, 2 632

[37] Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. 633
Gdumb: A simple approach that questions our progress in 634
continual learning. In European conference on computer vi- 635
sion, pages 524–540. Springer, 2020. 6 636

[38] Ameya Prabhu, Hasan Abed Al Kader Hammoud, Puneet 637
Dokania, Philip H. S. Torr, Ser-Nam Lim, Bernard Ghanem, 638

8

CVPR
#41

CVPR
#41

CVPR 2024 Submission #41. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

and Adel Bibi. Computationally budgeted continual learn-639
ing: What does matter?, 2023. 7640

[39] Eitan Richardson and Yair Weiss. On gans and gmms. Ad-641
vances in Neural Information Processing Systems, 31, 2018.642
4, 7643

[40] Amanda Rios and Laurent Itti. Closed-loop memory gan for644
continual learning. arXiv preprint arXiv:1811.01146, 2018.645
3646

[41] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lil-647
licrap, and Gregory Wayne. Experience replay for continual648
learning. Advances in Neural Information Processing Sys-649
tems, 32:350–360, 2019. 2650

[42] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-651
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,652
Aditya Khosla, Michael Bernstein, et al. Imagenet large653
scale visual recognition challenge. International journal of654
computer vision, 115(3):211–252, 2015. 2655

[43] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon656
Kim. Continual learning with deep generative replay. arXiv657
preprint arXiv:1705.08690, 2017. 3658

[44] Kihyuk Sohn. Improved deep metric learning with multi-659
class n-pair loss objective. Advances in neural information660
processing systems, 29, 2016. 2661

[45] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning662
structured output representation using deep conditional gen-663
erative models. Advances in neural information processing664
systems, 28, 2015. 2665

[46] Hoang Thanh-Tung and Truyen Tran. Catastrophic forget-666
ting and mode collapse in gans. In 2020 international joint667
conference on neural networks (ijcnn), pages 1–10. IEEE,668
2020. 4, 7669

[47] Gido M Van de Ven and Andreas S Tolias. Three scenar-670
ios for continual learning. arXiv preprint arXiv:1904.07734,671
2019. 1672

[48] Gido M van de Ven, Hava T Siegelmann, and Andreas S To-673
lias. Brain-inspired replay for continual learning with arti-674
ficial neural networks. Nature communications, 11(1):1–14,675
2020. 1, 2, 3676

[49] Eli Verwimp, Matthias De Lange, and Tinne Tuytelaars. Re-677
hearsal revealed: The limits and merits of revisiting samples678
in continual learning. In Proceedings of the IEEE/CVF Inter-679
national Conference on Computer Vision, pages 9385–9394,680
2021. 1681

[50] Chenshen Wu, Luis Herranz, Xialei Liu, Yaxing Wang, Joost682
van de Weijer, and Bogdan Raducanu. Memory replay gans:683
learning to generate images from new categories without for-684
getting, 2019. 3685

[51] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-686
mnist: a novel image dataset for benchmarking machine687
learning algorithms. arXiv preprint arXiv:1708.07747, 2017.688
4689

9

CVPR
#41

CVPR
#41

CVPR 2024 Submission #41. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

An analysis of best-practice strategies for replay and rehearsal in continual
learning

Supplementary Material

6. Rationale690

1

CVPR
#41

CVPR
#41

CVPR 2024 Submission #41. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) Absolute forgetting (warm-start). (b) Forgetting normalized over each column vector (warm-start).

(c) Absolute forgetting (generator reset). (d) Forgetting normalized over each column vector (generator reset).

(e) Difference in absolute forgetting between (c.) and (a.). (f) Forgetting in normalized accuracy between (c.) and (a.).

Figure 4. This illustration showcases the averaged forgetting FTend for all investigated datasets/splits. Each column represents a distinct
task split on each dataset, whereas the first letter (”M”, ”F”, ”S”, ”C” stands for MNIST, Fashion-MNIST, SVHN and CIFAR-10), followed
by an task split descriptor from Tab. 1. The deployed CL methods (4 groups * N rows) were modified as explained in Sec. 2.3: const. =
constant, balan. = balanced (DGR exclusive), lw-cls. = loss-weighting by class count, lw-tsk. = loss-weighting by task count. The results
for ER (top-most three rows) are re-used and serve as a baseline for the results in (c.-f.).

2

	. Introduction
	. Related Work
	. Contributions

	. Methods
	. Feature encoding
	. CL strategies
	. Replay strategies

	. Experiments
	. Evaluation protocol
	. Data
	. Evaluation metrics
	. Results

	. Discussion
	. Conclusion and take-home messages
	. Rationale

