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Abstract

We present an approach for continual learning (CL) that
is based on fully probabilistic (or: generative) models of
machine learning. In contrast to, e.g., GANs that are “gen-
erative” in the sense that they can generate samples, fully
probabilistic models aim at modeling the data distribution
directly. Consequently, they provide functionalities that
are highly relevant for continual learning, such as den-
sity estimation (outlier detection) and sample generation.
As a concrete realization of generative continual learn-
ing, we propose Gaussian Mixture Replay (GMR). GMR
is a pseudo-rehearsal approach using a Gaussian Mixture
Model (GMM) instance for both generator and classifier
functionalities. Relying on the MNIST, FashionMNIST and
Devanagari benchmarks, we first demonstrate unsupervised
task boundary detection by GMM density estimation, which
we also use to reject untypical generated samples. In ad-
dition, we show that GMR is capable of class-conditional
sampling in the fashion of a cGAN. Lastly, we verify that
GMR, despite its simple structure, achieves state-of-the-art
performance on common class-incremental learning prob-
lems at very competitive time and memory complexity.

1. Introduction

Context This conceptual work is in the context of contin-
ual learning (CL). In its most general formulation, CL as-
sumes that the distribution of training data changes over the
training time of a machine learning model (concept drift).
Often, this is restricted to a succession of sub-tasks having
a stable data distribution, with abrupt changes in data distri-
bution occurring at sub-task boundaries only. This is what
we term a sequential learning task (SLT), see Sec. 2.

Although the CL paradigm is completely agnostic w.r.t.
the type of learning that is involved. Most current work on
CL is about supervised learning, often in the context of clas-
sification which usually requires discriminative machine
learning methods. Since such methods are not well-suited
for outlier detection, the recognition of sub-task boundaries

is problematic. The problem is usually circumvented by
simply assuming that sub-task boundaries are known.

What renders CL different from conventional machine
learning is the fact learning occur continuously over long
times. This implies a number of constraints. First, access
to data is limited, typically to samples from the current sub-
task, for memory reasons. Of course, a small subset of sam-
ples from previous sub-tasks may be retained. More useful
still is the generation of such samples. Second, training
times for new sub-tasks should scale sub-linearly (ideally:
O(1)) with the total number of samples seen by the model.
Otherwise, CL could not be scaled to learning tasks with an
infinite number of sub-tasks.

Motivation The presented work is motivated by the fact
that many functionalities evoked in the previous paragraphs
are in fact typical of generative, unsupervised learning
methods. Mixture models, for example, are very commonly
used for outlier detection and sample generation and have
a very benign forgetting behavior when faced with changes
in data distribution. In this article, we aim at integrating
mixture models into a hybrid approach for supervised CL,
which we term Gaussian Mixture Replay (GMR), and to
show the various benefits for CL on standard benchmarks.

1.1. Related Work on CL

The field of CL is expanding rapidly, see [1, 2, 3, 4] for
reviews. Systematic comparisons between different ap-
proaches to avoid CF are performed in, e.g., [5, 6]. As
discussed in [6], many recently proposed methods demand
specific experimental setups, which deviate significantly
from application scenarios. For example, some methods re-
quire access to samples from all sub-tasks for tuning hyper-
parameters, whereas others need access to all samples from
past tasks. Many proposed methods have a time and/or
memory complexity that scales at least linearly with the
number of sub-tasks and thus may fail if this number is
large. Among the proposed remedies to CF, three major di-
rections may be distinguished according to [4]: parameter
isolation, regularization and rehearsal.

1
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Parameter Isolation Isolation methods aim at determin-
ing (or creating) a group of DNN parameters that are mainly
“responsible” for a certain sub-task. CL is then avoided
by protecting these parameters when training on successive
sub-tasks. Representative works are [7, 8, 9, 10, 11, 12].

Regularization Regularization methods mostly propose to
modify the loss function, including additional terms that
protect knowledge acquired in previous sub-tasks. Actual
approaches are very diverse: SSL [13] focuses on enhanc-
ing sparsity of neural activities, whereas approaches such
as LwF [14] rely on knowledge distillation mechanisms.
A method that has attracted significant attention is Elastic
Weight Consolidation (EWC) [15]. EWC inhibits changes
to weights that are important to previous sub-tasks, measur-
ing this importance based on the Fisher information matrix
(FIM). Synaptic intelligence [16] is pursuing a similar goal.
Even an online variant of EWC is published [17]. Incremen-
tal Moment Matching (IMM) [18] makes use of the FIM to
merge the parameters obtained for different sub-tasks. The
Matrix of Squares (MasQ) method [19] is similar in spirit to
EWC, but relies on the calculus of derivatives to assess the
importance of parameters for a sub-task. It is more simple
w.r.t. its concepts and much more memory-efficient.

Rehearsal Rehearsal methods come mainly in two forms:
rehearsal and pseudo-rehearsal. Rehearsal methods store
a subset of samples from past sub-tasks preventing CF, ei-
ther by putting constraints on current sub-task training or
by adding retained samples to the current sub-task train-
ing set. Typical representatives of rehearsal methods are
iCaRL [20], (A-)GEM [21, 22], GBSS [23] and TEM [24].
Pseudo-rehearsal or generative replay methods, in contrast,
do not store samples but generate them using a dedicated
generator that is trained along with the learner, see Fig. 1.
Typical models used as generators are generative adversar-
ial networks (GANs), variational autoencoders (VAEs) and
their variants, see [25] and [26]. The GMR model that we
propose here belongs to this type as well.

train

generate

train

Generator

merge

Samples:

Samples:
...

Samples:
... Learner

Figure 1. The replay approach to continual learning: a Learner,
e.g., a DNN, is trained on several sub-tasks sequentially. To avoid
forgetting, a Generator is trained to generate samples from past
sub-tasks. For training L, G generates samples from past sub-
tasks, which are merged with current sub-task samples.

Training and Evaluation Paradigms for CL In the
context of CL, a wide range of training and evaluation
paradigms are proposed, see [27, 28, 29, 30, 5, 31, 32].

1.2. Gaussian Mixture Replay

Gaussian Mixture Replay (GMR) is a CL approach based on
pseudo-rehearsal, with a Gaussian Mixture Model (GMM)
serving as generator. Mixture models describe the probabil-
ity density of data X as a weighted superposition of para-
metric distributions p(·;βj):

p(X) =
∏
i

p(xi) =
∏
i

K∑
j=1

πjp(xi;βj).

For GMR, we use Gaussian parametric distributions
defined by centroids µj and covariance matrices Σj :
p(x;βj)≡N (x;µj ,Σj)≡Nj(x). For simplicity, we de-
scribe GMR including a single GMM “layer” only, but a
generalization to deep convolutional GMMs is straightfor-
ward, see [33]. Data vectors entering the trained GMM are
transformed into the GMM’s a posteriori distibution (or re-
sponsibility) γ as γi(x) = exp(Ni(x))∑

z exp(Nz(x))
. Responsibilities

are bounded in the interval [0, 1] and normalized to have
unit sum:

∑
z γz(x) = 1. This makes them well suited as

inputs for a linear classifier which transforms responsibil-
ities into class membership probabilities. The data flow
through a GMR instance is shown in Fig. 2.

Learner
GMM
Posterior

Generator

Input GMM Linear
Classifier

Class
estimation

Figure 2. Principal structure of the GMR model, composed
of a GMM modeling the distribution of training samples (left).
A linear classifier operating on the posterior probabilities (also
termed responsibilities) produced by the GMM. The coupled
GMM/classifier implements the Learner, whereas the GMM im-
plements the Generator from Fig. 1. The GMM sampling process
is informed by feedback from the classifier.

A major point about GMR is that the generator and
learner are not separate entities. The GMM performs gener-
ative tasks (sampling and outlier detection), and, at the same
time, provides the learner (i.e., the linear classifier) with a
high-level data representation.

1.3. Differences to Related Work

Gaussian Mixture Replay (GMR) aims to improve the fol-
lowing aspects of recent work on continual learning:

Outlier Detection Discriminative machine learning mod-
els such as DNNs or CNNs, which are at the heart of most
current CL approaches, allow supervised outlier detection
only. Here, outliers are simply samples with high loss, and
concept drift is assumed to occur if the loss changes sig-
nificantly. However, loss computation requires targets for
supervised learning, which are not always available. More
problematic still, in such an approach it is impossible to de-
termine whether concept drift is occurring in the data, or it is

2
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just the targets that are drifting. And lastly, outlier detection
for individual samples cannot be trusted: high-loss inliers
cannot be distinguished from outliers, unless classification
is near-perfect.

Sample Generation In pseudeo-rehearsal methods such
as [25], GANs (cGANs, WGANs) are employed as gener-
ators. While these can generate impressive samples, it is
not clear whether these samples represent the full probabil-
ity distribution that they are supposed to sample from. In
fact, there is the problem of mode collapse, where GANs
focus on a small part of the data distribution only. Mode
collapse is difficult to detect automatically since GANs do
not possess a (differentiable) loss function that expresses
the models’ current ability to sample.

Resource Efficiency Pseudo-rehearsal approaches contain
generator and learner components. For GANs, the genera-
tor is further composed of a generator and a discriminator.
All of these components are usually implemented as DNNs
or CNNs requiring a considerable amount of resources, in
particular memory.

Scalability Since the generators are implemented as
CNNs or DNNs, they are very sensitive to class balance.
For each new sub-task, the generator must therefore pro-
duce the precise number of samples that ensures that classes
from previous and current sub-tasks are balanced. As a con-
sequence, the number of generated samples grows linearly
with the number of sub-tasks, which may be prohibitive for
problems with many sub-tasks.

1.4. Novel Contributions

GMR offers several novel contributions to the field of CL:
• Unsupervised outlier detection: consistency ensured by

relying on a fully probabilistic GMM
• Resource-efficiency: pseudo-rehearsal integrating

learner and generator in a single structure
• Robustness: model collapse excluded by theoretical

guarantees for GMM training
• Competitiveness: state-of-the-art CL performance on

standard problems
To validate our approach, we perform a comparison to Elas-
tic Weight Consolidation (EWC) model what is assumed to
be a “standard model” for CL in many recent publications.
A simple generative-replay approach as presented in [25] is
used as baseline. Furthermore, we provide a public Tensor-
Flow 2 implementation1.

2. Data

Image Benchmarks In order to measure the impact of for-
getting during continual learning, three public image classi-

1https://github.com/cvpr2021-anonymous/CLwFPM

fication benchmarks are used to construct sequential learn-
ing tasks, see Tab. 2. All datasets consist of grayscale im-
ages with dimensions of 28× 28× 1 or 32× 32× 3, whose
entries are normalized to the [0, 1] interval. We merge the
provided train and test sets for each benchmark, and split
the merged data in a proportion of 90% to 10% into training
and test data. All datasets exhibit an almost equal distribu-
tion of samples within classes.

MNIST contains images of handwritten digits (0-9) with
a resolution of 28× 28 pixels. It is probably the most com-
monly used benchmark for classification problems. Fash-
ionMNIST contains pictures of different types of clothes.
This data set is supposed to be harder to classify compared
to MNIST (same resolution) and thus leads to lower accu-
racies. Similar to MNIST, the Devanagari data set contains
written Devanagari letters. It is available in a resolution of
32× 32 pixels per image. Since there are more classes in-
cluded than needed, we randomly select 10 classes.

Sequential Learning Tasks Sequential Learning Tasks
(SLTs) simulate a continuous learning scenario by dividing
data sets given in Sec. 2. The resulting sub data sets are
enumerated and contain only samples of non-overlapping
classes. For example, a D5-5 task consists of two sub-data
sets consisting of 5 classes each. Each sub-task is identi-
fied by its order, e.g., T1, T2, . . ., Tx. Baseline experiments
(D10) contain all available classes to investigate the effect
of incremental task-by-task training.

With SLTs basic experiments can be carried out to de-
termine the effect of forgetting under the above conditions.
To measure the impact of the number of classes contained
in a task, different combinations and subdivisions are evalu-
ated. Tab. 1 displays all evaluated SLTs and their definition
of sub-tasks can be taken.

3. Gaussian Mixture Replay in Detail
As stated in Sec. 1.2, GMR is comprised of a generator real-
ized by a GMM, and a learner realized by a linear classifier.
Both can indeed be replaced by more complex, “deeper”
methods, but we limit us here to simplest case.

The generator consists of K Gaussian mixture compo-
nents, each maintaining a separate µk centroid and covari-

Table 1. Definition of Sequential Learning Tasks (SLTs) and the
class divisions of their sub-tasks.

SLT Sub-Tasks
D10 T1(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
D9-1a T1(0, 1, 2, 3, 4, 5, 6, 7, 8) T2(9)
D9-1b T1(0, 1, 2, 4, 5, 6, 7, 8, 9) T2(3)
D5-5a T1(0, 1, 2, 3, 4) T2(5, 6, 7, 8, 9)
D5-5b T1(0, 1, 2, 6, 7) T2(3, 4, 5, 8, 9)
D2-2-2-2-2a T1(0, 1) T2(2, 3) T3(4, 5) T4(6, 7) T5(8, 9)
D2-2-2-2-2b T1(1, 7) T2(0, 2) T3(6, 8) T4(4, 5) T5(3, 9)

3
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Table 2. Detailed information to the used data sets (including examples of each class).
Dataset Ref. Resolution Number of Number of Random Examples (from classes)

Training Samples Test Samples 0 1 2 3 4 5 6 7 8 9
MNIST [34] 28× 28 50 000 10 000

FashionMNIST [35] 28× 28 60 000 10 000

Devanagari [36] 32× 32 18 000 2 000

ance matrix Σj . Covariance matrices are always taken to be
diagonal (a justification for this is given in the discussion).

As the basic data flow in GMR has been outlined in
Sec. 1.2, we will describe the procedure for training, sam-
pling and outlier detection, as well as outline the principal
GMR hyper-parameters.

3.1. Outlier Detection

Outlier detection is performed by the generator according
to standard GMM procedures. Essentially, it is based on
the value of the loss function for a given sample, and any-
thing too far below the “normal” loss value is considered an
outlier. To achieve this, we compute of the mean and the
variance of the GMM loss during training:

µ̂(L) = EiL(xi)

Σ̂2(L) = Ei(L(xi)− µ̂(L))2.

A sample x is considered an outlier if, and only if,

L(x)< µ̂(L)− c
√

Σ̂2(L) , where c is a free parameter.
Smaller values of c will detect more outliers and vice versa.

3.2. Unconditional Sampling

Sampling is again conducted according to GMM standard
procedures. It consists of first drawing a GMM compo-
nent from a multinomial distribution parameterized by the
GMM weights π: k∼M(π). Then, a random vector
z ∈Rd, z∼N (0, I) of the same dimensions d as the data
is drawn. The vector is transformed into a sample x as
x=Σkz+µk, which ensures that x∼Nk(·;µk,Σk). In
Sec. 7.3, we will prove that the GMM log-likelihood on
training data provides a lower bound for the log-likelihood
of samples generated in this way. Thus, if we have higher
training log-likelihoods, we can expect to generate better
samples. To show this, we shall prove the following Propo-
sition: The training loss of a GMM is a lower bound on the
expected loss of generated samples.

Proof: To prove the proposition, it is sufficient to prove
the proposition for the case of a single Gaussian compo-
nent density, which shall be denoted N (x;µ,Σ)≡N (x).
After decomposing the covariance matrix Σ as Σ=AA>,
a set of samples G⊃ g can be obtained (see Sec. 3.2).
This is achieved by transforming a random normal vari-
able z∼N (0, I) as g=Az+µ. The loss on the generated

samples is expressed as

L(g) = lnN (g) = lnN (Az + µ)

∼ f(Σ)− 1

2
(Az)>Σ−1(Az) = f(Σ)− 1

2
‖z‖2

L(G) =
∑
i

L(g) = Nf(Σ)− dN

2
. (1)

If the training samples follow a Gaussian distribution, their
mean and variance coincide with the parametersµ, Σ of the
Gaussian component density. Thus, their loss is identical to
Eq. (1) by the same reasoning. If training samples deviate
from Gaussianity, as may be expected in practice, their loss
will be lower. This is trivial to show by expanding their
distribution around a Gaussian one into an Edgeworth series
(see [37]), and plugging this expansion into Eq. (1). Thus,
we know that the loss that is actually obtained on test data
represents a lower bound for the loss of generated samples.

3.3. Class-Conditional Sampling

This form of sampling has the goal of generating samples
belonging to a given class c. To provide the GMM with this
information, we fix a certain output vector o of the linear
classifier and try to infer what inputs i would produce it:

o = s(Wi+ b)⇒ i ≈W>(s−1(o) + k − b
)
.

Since the softmax function is shift-invariant, the inverse is
defined only up to a constant k which we set to 0. To first
approximation, we assume that the weight matrixW of the
linear classifier has orthogonal columns. Entries of o must
be bounded in the [0, 1] interval, have a unit sum, and ex-
press a confident decision for a given class C. We choose
oC = 0.95 and normalize accordingly to obtain a control
signal i for the GMM. This control signal represents the ex-
pected posterior probabilities of the GMM for a given class
C. It is therefore consistent to use it for unconditional sam-
pling (previous paragraph) instead of the GMM weights π.

3.4. Replay

Prior to training generator and learner at sub-task T ≥ 1,
samples from previous sub-tasks 1≤ t<T must be pro-
duced by the generator. If we let ν(t) denote the number
of data samples for any sub-task t, and ξ(t) the number of
samples to generate for sub-task t, then two strategies may

4
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be discerned for choosing ξ(t). The proportional strategy
which chooses ξ(t) =

∑t−1
t′ ν(t′) and the constant strategy

with ξ(t) =κν(t).

Training Once samples have been generated, generator
and learner are trained concurrently, each with its own loss
function. For the GMM, we use plain stochastic gradi-
ent descent (SGD) to maximize the log-likelihood of the
training data under the model, expressed in the notation of
Sec. 1.2 as:

L(X) = ln p(X) =
∑
i

log
∑
k

πjNj(x),

using the efficient training procedure for high-dimensional
streaming data described in [38]. The linear classifier re-
ceives the GMM responsibilities γ as input and is trained
by minimizing the usual cross-entropy loss

yi = s
(
Wγi(x) + b

)
LCE =

1

N

∑
i

log yijtij

by SGD, with s(·) denoting the softmax function. SGD
learning rates for GMM and linear classifier are denoted by
εG and εC .

Hyper-Parameters The principal hyper-parameters of
GMR are, first of all, the number K of GMM compo-
nents, and the GMM learning rate εGMM. All GMM hyper-
parameters are selected according to [38]. In particular, the
crucial parameterK follows a “the more the better” logic so
it is easy to select. For the linear classifier, the learning rate
εC plays a role as well. Since inputs to the linear classifier
are normalized and bounded in the [0, 1] interval, the opti-
mal learning rate is rather task-independent can be selected
as a function of the GMM parameter K.

4. Elastic Weight Consolidation
The approach from [15] is a typical regularization-based
model for DNNs, see Sec. 1.1. EWC stores DNN param-
eters ~θTt after training on sub-task Tt. In addition, EWC
computes the “importance” of each parameter after training
on sub-task Tt. This is done by approximating the diagonal
~FTt of the Fisher Information Matrix (see [19] for a discus-
sion of this approximation). The EWC loss function con-
tains additional terms, see Eq. (2) besides the cross-entropy
loss computed on the current sub-task Tc. These additional
terms punish deviations from “important” DNN parameter
values obtained after training on past sub-tasks:

LEWC = LTc(θ) +
λ

2

c−1∑
t=1

∑
i

FTt
i

(
θi − θTt

i

)2
(2)

EWC is optimized using the Adam optimizer. EWC hyper-
parameters are the SGD step size εEWC , the regularization

constant λ and of course the number and size of layers in
the DNN. In [15], it is proposed to set λ= 1/εEWC , thus
eliminating one hyper-parameter.

5. Generative Replay
We implement generative replay (GR) as described in [25]
with a GAN-based generator. The precise configurations of
generator and learner is given in App. A. Batch sizes are B
for the first sub-task and 2B for sub-tasks t> 1. Important
hyper-parameters are the SGD step size εG, and the num-
ber of epochs for training. At each sub-task, the generator
produces as many samples as contained in all previous sub-
tasks to maintain balance. Alternatively, a fixed number of
generated samples is possible as well.

6. Experiments
For validating the goals as outlined in Sec. 1, we conduct the
following experiments on sequential learning tasks (SLTs)
constructed as described in Sec. 2. In Sec. 6.2, we demon-
strate unsupervised outlier detection to identify sub-task
boundaries without reference to class labels. A demon-
stration of sampling quality as measured by the GMM-
loglikelihood is given in Sec. 6.3. As a by-product of the
GMR architecture, we present, results on class-conditional
sampling on all three datasets in Sec. 6.4. Sec. 6.5 shows
that GMR achieves state-of-the-art classification perfor-
mance on the SLTs when compared to generative replay and
EWC.

6.1. Hyper-Parameters

GMR In the terms of Sec. 3, we chose K = 100,
εG = 0.01, B= 100, εC = 0.01. For the constant replay
strategy (see Sec. 3.4), a proportionality constant of S= 2
is used. Training epochs are empirically set to 20 for each
task. The other hyper-parameters are set to default values
as defined in [38].

GR In terms of Sec. 5 and Fig. 1, generators are always
trained for 50 epochs (E) and solvers for 25 epochs. The
Adam optimizer is used for effecting gradient descent, using
a step size εG = 0.001 for solver and generators. Samples
are generated such as to maintain balance between previous
and current classes.

EWC For each SLT, we perform a grid search for the
parameter ε. We vary the learn rate for EWC εEWC as
εEWC ∈{0.001, 0.0001, 0.00001, 0.000001, 0.0000001}.
Depending on this λ is always set to 1

εEWC . We fix the
model architecture to a three-layer DNN, each of size
800. Training epochs E are empirically set to 10 for each
training task. The best hyper-parameters and experiments
are selected based on the highest average accuracy (over 10
repetitions) on all classes measured after the last sub-task.

5
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6.2. Task Boundary Detection

We train GMR on the SLT D2-2-2-2-2a, while updating the
sliding average and variance for the log-likelihood as indi-
cated in Sec. 3.1. For each sample x in a mini-batch B, we
test whether they are inliers as discussed in Sec. 3.1, using
a value of c= 1. We then compute the empirical probabil-
ity of inliers in the mini-batch. Each time this probability
drops by more than 20%, we assume a task boundary has
occurred. The results are shown in Fig. 3.

Figure 3. Detection of task boundaries on the first three sub-tasks
of D2-2-2-2-2a. Areas highlighted in red signal automatically de-
tected task boundaries.

6.3. Sampling

In this experiment, we verify that the GMM loss of gen-
erated samples (sampling loss) is always higher than the
GMM training loss. A proof for this was given in Sec. 3.2:
here, we give en empirical validation. This experiment is
independent of continual learning, which is why we use the
baseline SLTD10 for all three datasets. Fig. 4 shows results
for all three datasets, and we observe that the sampling loss
is indeed higher than the asymptotic training loss, often by
quite a margin.

6.4. Class-Conditional Sampling with GMR

For this experiment, we train a GMR instance on SLT D10

for each dataset, i.e., on all classes at once. Subsequently,

Figure 4. Training and sampling loss for SLT D10. The sampling
loss is superimposed on each graph as a black horizontal line. Its
value is given in the box.

we use the each of the three trained models to conditionally
generate 50 samples: 25 from classes C= {1, 2}, and 25
samples from from classes C= {5, 7}. For each generated
sample, the class c is drawn from C with equal probability.
Control signals to the GMM for generating a sample from
class c are obtained and applied according to Sec. 3.3. The
results can be viewed in Fig. 5. We observe that samples are
very reliably selected from the given set C. In some cases,
errors occurs for samples that are visually very similar to
elements of C: this reflects simply the fact that the classifi-
cation accuracy is not perfect. For perfect classification, we
expect no such such sampling inaccuracies.

Additionally, we perform class-conditional sampling in
the same way as just described, but using a deep convolu-
tional GMM (DCGMM) as described in [33]. Model details
are given in App. B. The generated samples for MNIST are
shown in Fig. 6.

6.5. Comparison of GR, GMR and EWC

We train EWC, GMR and GR on all SLTs listed in Sec. 2,
according to the hyper-parameter settings described earlier
in this section, see Sec. 6.1. Classification accuracy is read
off after completing training on the last sub-task. Baseline
accuracy on a non-continual learning task (D10) is recorded
for all datasets and methods. For GR and GMR, we use the
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Table 3. Results of the conducted GMR, EWC and GR experiments. The accuracy in % is stated as baseline for all experiments based on
the available classes for each dataset. For each best SLT experiment (defined in Tab. 1) the difference to the baseline is given. Therefore,
the maximum measured accuracy value is used, averaged over 10 experiment repetitions. To measure the accuracy, the joint test dataset
consisting of all tasks (D10) is used.

SLT

model
dataset

GMR EWC GR
MNIST FashionMNIST Devanagari MNIST FashionMNIST Devanagari MNIST FashionMNIST Devanagari

acc.% std acc.% std acc.% std acc.% std acc.% std acc.% std acc.% std acc.% std acc.% std
D10 baseline 87.4 0.59 73.9 0.26 74.1 0.73 97.57 0.26 87.55 0.38 95.58 0.56 99.3 0 99.3 0 99.1 0

diff. std diff. std diff. std diff. std diff. std diff. std diff. std diff. std diff. std
D9-1a -1.3 0.59 -2.7 0.26 -3.2 0.73 -41.8 0.26 -9.6 0.38 -56.6 0.56 -15.1 0.7 -25.6 0.5 -13.5 0.54

D9-1b -3.5 2.19 -1.5 0.87 -1.4 0.88 -50.7 7.77 -20.1 2.52 -29.7 13.34 -21.8 0.9 -16.5 1.1 -10.9 0.41

D5-5a -0.6 1.53 -1.2 1.53 -6.8 1.38 -35.3 6.65 -32.7 4.22 -46.0 15.38 -10.0 1.4 -19.8 3.2 -6.7 0.3

D5-5b -1.3 1.92 -1.9 0.49 -4.7 1.59 -35.0 1.83 -36.0 2.72 -47.1 0.11 -11.9 1.0 -17.7 4.0 -7.6 0.37

D2-2-2-2-2a -9.5 3.83 -8.5 0.91 -22.5 2.71 -72.2 7.43 -55.6 4.05 -72.1 2.75 -41.4 3.8 -25.0 5.9 -40.0 3.3

D2-2-2-2-2b -10.4 5.28 -5.7 2.37 -14.7 2.94 -72.6 3.22 -57.3 4.99 -73.2 2.31 -34.8 4.1 -29.4 7.3 -34.7 7.6

Figure 5. Conditional sampling results for GMR models trained
on MNIST (top), FashionMNIST (middle) and Devanagari (bot-
tom). In each row, 25 samples for classes 1,2 (left) and 25 samples
for classes 5,7 (right) are generated.

Figure 6. Conditional sampling results for GMR models trained
on MNIST using a deep convolutional GMM (DCGMM). To be
read as Fig. 5.

proportional sample generation strategy, see Sec. 3.4. We
present the results as deviations from baseline performance

in Tab. 3. The comparison is not entirely fair since GMR has
a much lower baseline performance. On the contrary, we
observe that the drop in classification accuracy due to CL is
generally much smaller. We take the view that is really this
drop that characterizes continual learning performance.

7. Principal Conclusions and Discussion
7.1. State-Of-The-Art GMR Performance

From the experiments of Sec. 6, we can conclude that GMR
can egalize the performance of GR, and that both GMR
and GR outperform EWC by a large margin. Here, we are
talking about continual learning performance as defined in
Sec. 6.5. GMR performance on the non-continual baseline
D10 is markedly inferior to that of a standard DNN. This
makes it even more remarkable that continual learning per-
formance is similar to GR, which after all included a fully-
fledged CNN classifier.

7.2. Memory Requirements

GMR has a low memory footprint because the genera-
tor (the GMM) is re-used for classification, see Fig. 2.
Since the GMM itself is “flat”, its memory requirements
are modest. For an input dimensionality of d= 1000,
with K = 100 GMM components and 10 classes, the to-
tal memory required to store the complete GMR model is
2Kd+ 10K + 10 = 201 010. The corresponding GR model
consists of a three-layer DNN (the learner) and two CNNs
for the generator and a discriminator. It contains 3 770 204
parameters, which is more than two orders of magnitude
larger than the corresponding GMR model. This is again
remarkable since continual learning performance is quite
comparable.

7.3. Quality of Generated Samples

In contrast to models like, e.g., GANs, GMMs provide
strong guarantees concerning the quality of generated sam-
ples via their loss function, see Sec. 3.2. A direct implica-
tion is that sample generation capacity can be monitored at
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training time by monitoring the loss. In particular, if the loss
should decrease significantly during training, this would be
a strong sign for mode collapse. This is virtually excluded
due to SGD that aims to maximize the loss, and such behav-
ior was never observed in all the experiments conducted in
Sec. 6.3.

7.4. Simple Conditional Sampling

As shown in Sec. 6.4, conditional sampling is a reliable way
to obtain samples from certain given classes only. The sim-
plicity of the process is an appealing feature of GMR, re-
alized through the GMMs ability for (unconditional) sam-
pling.

7.5. Respecting Real-World Constraints

GMR is attractive for real-world applications because it
fully respects several important constraints (see [6] for a
more comprehensive discussion of real-world constraints).

No Looking Back GMR does not require access to data
from past sub-tasks to determine when to stop re-training,
see Sec. 1. This property is shared with GR but not with
EWC, whose performance drops after a certain time, see
Sec. 6.5. To determine the optimal point for stopping train-
ing, EWC requires access to data from past sub-tasks, which
is in direct contradiction to the continual learning paradigm,
see Sec. 1.

No Looking Ahead The hyper-parameters for EWC, no-
tably the balancing parameter λ and the DNN parameters,
need to be determined by grid-search, since performance
depends upon these parameters in a complex way. This re-
quires repeating the whole experiment many times with dif-
ferent parameters, and thus determining hyper-parameters
for given sub-task based on sub-tasks that come later. That
violates the CL paradigm, which states that only one sub-
task at a time can be accessed. See [6] for a longer discus-
sion on this point. In contrast, GMR has only one really
free parameter, the number of GMM components K, which
follows a “the more the better”. Therefore, it is possible
to determine a good value for K on sub-task T1 only, and
thus to respect the CL paradigm. A large number of training
epochs does not affect learning adversely, and can thus be
liberally selected on T1, just as the learning rate.

7.6. Model Limitations

As far as continual learning performance is concerned, the
presented GMR method has state-of-the-art performance on
SLTs derived from simple benchmarks such as MNIST or
FashionMNIST. It is however strongly inferior w.r.t. non-
continual (baseline) performance as shown in Sec. 6.5.
Neither can it be expected to perform well on more dif-
ficult SLTs constructed, e.g., from the SVHN benchmark.
Mainly, such a complex benchmark would require an ex-

tremely high number K of GMM components for high-
quality sampling. In addition, the representation provided
by an “flat” GMM may not be expressive enough to allow
accurate classification. A solution to both problems may
well lie in using deep GMM variants such as presented in
[39] or [33].

8. Outlook and Next Steps
Applying GMR to more challenging problems requires
principally to improve the GMM’s sample generation ca-
pacity without excessive resource requirements. We will
investigate two main directions:

Using a Deep Convolutional Generator Just as DNNs
and CNNs can represent more complex functions than
single-layer perceptrons, deep convolutional GMMs can
model more complex distributions. We plan to investigate
the models proposed in [39] or [33] for replacing the current
“flat” GMM.

Different GMR Design Choices A major design choice in
GMR is to restrict GMMs to diagonal covariance matrices,
see Sec. 3. Full covariance matrices are out of the question
due to memory reasons: forK = 100 and data dimensional-
ity d≈ 1000. This would involve 108 parameters for storage
alone, not talking about memory requirements on a GPU
due to parallel processing. A compromise might be the use
of a MFA (mixture of factor analyzers) instead of a GMM
model. This may, at reasonable memory overhead, signif-
icantly enhance the GMM’s sample generation capacity as
demonstrated in, e.g., [40].
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