
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

CVPR
#****

CVPR
#****

CVPR 2021 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Continual Learning with Fully Probabilistic Models

Anonymous CVPR 2021 submission

Paper ID ****

Abstract

We present an approach for continual learning (CL) that
is based on fully probabilistic (or: generative) models of
machine learning. In contrast to, e.g., GANs that are “gen-
erative” in the sense that they can generate samples, fully
probabilistic models aim at modeling the data distribution
directly. Consequently, they provide functionalities that
are highly relevant for continual learning, such as den-
sity estimation (outlier detection) and sample generation.
As a concrete realization of generative continual learn-
ing, we propose Gaussian Mixture Replay (GMR). GMR
is a pseudo-rehearsal approach using a Gaussian Mixture
Model (GMM) instance for both generator and classifier
functionalities. Relying on the MNIST, FashionMNIST and
Devanagari benchmarks, we first demonstrate unsupervised
task boundary detection by GMM density estimation, which
we also use to reject untypical generated samples. In ad-
dition, we show that GMR is capable of class-conditional
sampling in the fashion of a cGAN. Lastly, we verify that
GMR, despite its simple structure, achieves state-of-the-art
performance on common class-incremental learning prob-
lems at very competitive time and memory complexity.

1. Introduction

Context This conceptual work is in the context of contin-
ual learning (CL). In its most general formulation, CL as-
sumes that the distribution of training data changes over the
training time of a machine learning model (concept drift).
Often, this is restricted to a succession of sub-tasks having
a stable data distribution, with abrupt changes in data distri-
bution occurring at sub-task boundaries only. This is what
we term a sequential learning task (SLT), see Sec. 2.

Although the CL paradigm is completely agnostic w.r.t.
the type of learning that is involved. Most current work on
CL is about supervised learning, often in the context of clas-
sification which usually requires discriminative machine
learning methods. Since such methods are not well-suited
for outlier detection, the recognition of sub-task boundaries

is problematic. The problem is usually circumvented by
simply assuming that sub-task boundaries are known.

What renders CL different from conventional machine
learning is the fact learning occur continuously over long
times. This implies a number of constraints. First, access
to data is limited, typically to samples from the current sub-
task, for memory reasons. Of course, a small subset of sam-
ples from previous sub-tasks may be retained. More useful
still is the generation of such samples. Second, training
times for new sub-tasks should scale sub-linearly (ideally:
O(1)) with the total number of samples seen by the model.
Otherwise, CL could not be scaled to learning tasks with an
infinite number of sub-tasks.

Motivation The presented work is motivated by the fact
that many functionalities evoked in the previous paragraphs
are in fact typical of generative, unsupervised learning
methods. Mixture models, for example, are very commonly
used for outlier detection and sample generation and have
a very benign forgetting behavior when faced with changes
in data distribution. In this article, we aim at integrating
mixture models into a hybrid approach for supervised CL,
which we term Gaussian Mixture Replay (GMR), and to
show the various benefits for CL on standard benchmarks.

1.1. Related Work on CL

The field of CL is expanding rapidly, see [1, 2, 3, 4] for
reviews. Systematic comparisons between different ap-
proaches to avoid CF are performed in, e.g., [5, 6]. As
discussed in [6], many recently proposed methods demand
specific experimental setups, which deviate significantly
from application scenarios. For example, some methods re-
quire access to samples from all sub-tasks for tuning hyper-
parameters, whereas others need access to all samples from
past tasks. Many proposed methods have a time and/or
memory complexity that scales at least linearly with the
number of sub-tasks and thus may fail if this number is
large. Among the proposed remedies to CF, three major di-
rections may be distinguished according to [4]: parameter
isolation, regularization and rehearsal.

1



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#****

CVPR
#****

CVPR 2021 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Parameter Isolation Isolation methods aim at determin-
ing (or creating) a group of DNN parameters that are mainly
“responsible” for a certain sub-task. CL is then avoided
by protecting these parameters when training on successive
sub-tasks. Representative works are [7, 8, 9, 10, 11, 12].

Regularization Regularization methods mostly propose to
modify the loss function, including additional terms that
protect knowledge acquired in previous sub-tasks. Actual
approaches are very diverse: SSL [13] focuses on enhanc-
ing sparsity of neural activities, whereas approaches such
as LwF [14] rely on knowledge distillation mechanisms.
A method that has attracted significant attention is Elastic
Weight Consolidation (EWC) [15]. EWC inhibits changes
to weights that are important to previous sub-tasks, measur-
ing this importance based on the Fisher information matrix
(FIM). Synaptic intelligence [16] is pursuing a similar goal.
Even an online variant of EWC is published [17]. Incremen-
tal Moment Matching (IMM) [18] makes use of the FIM to
merge the parameters obtained for different sub-tasks. The
Matrix of Squares (MasQ) method [19] is similar in spirit to
EWC, but relies on the calculus of derivatives to assess the
importance of parameters for a sub-task. It is more simple
w.r.t. its concepts and much more memory-efficient.

Rehearsal Rehearsal methods come mainly in two forms:
rehearsal and pseudo-rehearsal. Rehearsal methods store
a subset of samples from past sub-tasks preventing CF, ei-
ther by putting constraints on current sub-task training or
by adding retained samples to the current sub-task train-
ing set. Typical representatives of rehearsal methods are
iCaRL [20], (A-)GEM [21, 22], GBSS [23] and TEM [24].
Pseudo-rehearsal or generative replay methods, in contrast,
do not store samples but generate them using a dedicated
generator that is trained along with the learner, see Fig. 1.
Typical models used as generators are generative adversar-
ial networks (GANs), variational autoencoders (VAEs) and
their variants, see [25] and [26]. The GMR model that we
propose here belongs to this type as well.

train

generate

train

Generator

merge

Samples:

Samples:
...

Samples:
... Learner

Figure 1. The replay approach to continual learning: a Learner,
e.g., a DNN, is trained on several sub-tasks sequentially. To avoid
forgetting, a Generator is trained to generate samples from past
sub-tasks. For training L, G generates samples from past sub-
tasks, which are merged with current sub-task samples.

Training and Evaluation Paradigms for CL In the
context of CL, a wide range of training and evaluation
paradigms are proposed, see [27, 28, 29, 30, 5, 31, 32].

1.2. Gaussian Mixture Replay

Gaussian Mixture Replay (GMR) is a CL approach based on
pseudo-rehearsal, with a Gaussian Mixture Model (GMM)
serving as generator. Mixture models describe the probabil-
ity density of data X as a weighted superposition of para-
metric distributions p(·;βj):

p(X) =
∏
i

p(xi) =
∏
i

K∑
j=1

πjp(xi;βj).

For GMR, we use Gaussian parametric distributions
defined by centroids µj and covariance matrices Σj :
p(x;βj)≡N (x;µj ,Σj)≡Nj(x). For simplicity, we de-
scribe GMR including a single GMM “layer” only, but a
generalization to deep convolutional GMMs is straightfor-
ward, see [33]. Data vectors entering the trained GMM are
transformed into the GMM’s a posteriori distibution (or re-
sponsibility) γ as γi(x) = exp(Ni(x))∑

z exp(Nz(x))
. Responsibilities

are bounded in the interval [0, 1] and normalized to have
unit sum:

∑
z γz(x) = 1. This makes them well suited as

inputs for a linear classifier which transforms responsibil-
ities into class membership probabilities. The data flow
through a GMR instance is shown in Fig. 2.

Learner
GMM
Posterior

Generator

Input GMM Linear
Classifier

Class
estimation

Figure 2. Principal structure of the GMR model, composed
of a GMM modeling the distribution of training samples (left).
A linear classifier operating on the posterior probabilities (also
termed responsibilities) produced by the GMM. The coupled
GMM/classifier implements the Learner, whereas the GMM im-
plements the Generator from Fig. 1. The GMM sampling process
is informed by feedback from the classifier.

A major point about GMR is that the generator and
learner are not separate entities. The GMM performs gener-
ative tasks (sampling and outlier detection), and, at the same
time, provides the learner (i.e., the linear classifier) with a
high-level data representation.

1.3. Differences to Related Work

Gaussian Mixture Replay (GMR) aims to improve the fol-
lowing aspects of recent work on continual learning:

Outlier Detection Discriminative machine learning mod-
els such as DNNs or CNNs, which are at the heart of most
current CL approaches, allow supervised outlier detection
only. Here, outliers are simply samples with high loss, and
concept drift is assumed to occur if the loss changes sig-
nificantly. However, loss computation requires targets for
supervised learning, which are not always available. More
problematic still, in such an approach it is impossible to de-
termine whether concept drift is occurring in the data, or it is

2



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

CVPR
#****

CVPR
#****

CVPR 2021 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

just the targets that are drifting. And lastly, outlier detection
for individual samples cannot be trusted: high-loss inliers
cannot be distinguished from outliers, unless classification
is near-perfect.

Sample Generation In pseudeo-rehearsal methods such
as [25], GANs (cGANs, WGANs) are employed as gener-
ators. While these can generate impressive samples, it is
not clear whether these samples represent the full probabil-
ity distribution that they are supposed to sample from. In
fact, there is the problem of mode collapse, where GANs
focus on a small part of the data distribution only. Mode
collapse is difficult to detect automatically since GANs do
not possess a (differentiable) loss function that expresses
the models’ current ability to sample.

Resource Efficiency Pseudo-rehearsal approaches contain
generator and learner components. For GANs, the genera-
tor is further composed of a generator and a discriminator.
All of these components are usually implemented as DNNs
or CNNs requiring a considerable amount of resources, in
particular memory.

Scalability Since the generators are implemented as
CNNs or DNNs, they are very sensitive to class balance.
For each new sub-task, the generator must therefore pro-
duce the precise number of samples that ensures that classes
from previous and current sub-tasks are balanced. As a con-
sequence, the number of generated samples grows linearly
with the number of sub-tasks, which may be prohibitive for
problems with many sub-tasks.

1.4. Novel Contributions

GMR offers several novel contributions to the field of CL:
• Unsupervised outlier detection: consistency ensured by

relying on a fully probabilistic GMM
• Resource-efficiency: pseudo-rehearsal integrating

learner and generator in a single structure
• Robustness: model collapse excluded by theoretical

guarantees for GMM training
• Competitiveness: state-of-the-art CL performance on

standard problems
To validate our approach, we perform a comparison to Elas-
tic Weight Consolidation (EWC) model what is assumed to
be a “standard model” for CL in many recent publications.
A simple generative-replay approach as presented in [25] is
used as baseline. Furthermore, we provide a public Tensor-
Flow 2 implementation1.

2. Data

Image Benchmarks In order to measure the impact of for-
getting during continual learning, three public image classi-

1https://github.com/cvpr2021-anonymous/CLwFPM

fication benchmarks are used to construct sequential learn-
ing tasks, see Tab. 2. All datasets consist of grayscale im-
ages with dimensions of 28× 28× 1 or 32× 32× 3, whose
entries are normalized to the [0, 1] interval. We merge the
provided train and test sets for each benchmark, and split
the merged data in a proportion of 90% to 10% into training
and test data. All datasets exhibit an almost equal distribu-
tion of samples within classes.

MNIST contains images of handwritten digits (0-9) with
a resolution of 28× 28 pixels. It is probably the most com-
monly used benchmark for classification problems. Fash-
ionMNIST contains pictures of different types of clothes.
This data set is supposed to be harder to classify compared
to MNIST (same resolution) and thus leads to lower accu-
racies. Similar to MNIST, the Devanagari data set contains
written Devanagari letters. It is available in a resolution of
32× 32 pixels per image. Since there are more classes in-
cluded than needed, we randomly select 10 classes.

Sequential Learning Tasks Sequential Learning Tasks
(SLTs) simulate a continuous learning scenario by dividing
data sets given in Sec. 2. The resulting sub data sets are
enumerated and contain only samples of non-overlapping
classes. For example, a D5-5 task consists of two sub-data
sets consisting of 5 classes each. Each sub-task is identi-
fied by its order, e.g., T1, T2, . . ., Tx. Baseline experiments
(D10) contain all available classes to investigate the effect
of incremental task-by-task training.

With SLTs basic experiments can be carried out to de-
termine the effect of forgetting under the above conditions.
To measure the impact of the number of classes contained
in a task, different combinations and subdivisions are evalu-
ated. Tab. 1 displays all evaluated SLTs and their definition
of sub-tasks can be taken.

3. Gaussian Mixture Replay in Detail
As stated in Sec. 1.2, GMR is comprised of a generator real-
ized by a GMM, and a learner realized by a linear classifier.
Both can indeed be replaced by more complex, “deeper”
methods, but we limit us here to simplest case.

The generator consists of K Gaussian mixture compo-
nents, each maintaining a separate µk centroid and covari-

Table 1. Definition of Sequential Learning Tasks (SLTs) and the
class divisions of their sub-tasks.

SLT Sub-Tasks
D10 T1(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
D9-1a T1(0, 1, 2, 3, 4, 5, 6, 7, 8) T2(9)
D9-1b T1(0, 1, 2, 4, 5, 6, 7, 8, 9) T2(3)
D5-5a T1(0, 1, 2, 3, 4) T2(5, 6, 7, 8, 9)
D5-5b T1(0, 1, 2, 6, 7) T2(3, 4, 5, 8, 9)
D2-2-2-2-2a T1(0, 1) T2(2, 3) T3(4, 5) T4(6, 7) T5(8, 9)
D2-2-2-2-2b T1(1, 7) T2(0, 2) T3(6, 8) T4(4, 5) T5(3, 9)

3

https://github.com/cvpr2021-anonymous/CLwFPM


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

CVPR
#****

CVPR
#****

CVPR 2021 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 2. Detailed information to the used data sets (including examples of each class).
Dataset Ref. Resolution Number of Number of Random Examples (from classes)

Training Samples Test Samples 0 1 2 3 4 5 6 7 8 9
MNIST [34] 28× 28 50 000 10 000

FashionMNIST [35] 28× 28 60 000 10 000

Devanagari [36] 32× 32 18 000 2 000

ance matrix Σj . Covariance matrices are always taken to be
diagonal (a justification for this is given in the discussion).

As the basic data flow in GMR has been outlined in
Sec. 1.2, we will describe the procedure for training, sam-
pling and outlier detection, as well as outline the principal
GMR hyper-parameters.

3.1. Outlier Detection

Outlier detection is performed by the generator according
to standard GMM procedures. Essentially, it is based on
the value of the loss function for a given sample, and any-
thing too far below the “normal” loss value is considered an
outlier. To achieve this, we compute of the mean and the
variance of the GMM loss during training:

µ̂(L) = EiL(xi)

Σ̂2(L) = Ei(L(xi)− µ̂(L))2.

A sample x is considered an outlier if, and only if,

L(x)< µ̂(L)− c
√

Σ̂2(L) , where c is a free parameter.
Smaller values of c will detect more outliers and vice versa.

3.2. Unconditional Sampling

Sampling is again conducted according to GMM standard
procedures. It consists of first drawing a GMM compo-
nent from a multinomial distribution parameterized by the
GMM weights π: k∼M(π). Then, a random vector
z ∈Rd, z∼N (0, I) of the same dimensions d as the data
is drawn. The vector is transformed into a sample x as
x=Σkz+µk, which ensures that x∼Nk(·;µk,Σk). In
Sec. 7.3, we will prove that the GMM log-likelihood on
training data provides a lower bound for the log-likelihood
of samples generated in this way. Thus, if we have higher
training log-likelihoods, we can expect to generate better
samples. To show this, we shall prove the following Propo-
sition: The training loss of a GMM is a lower bound on the
expected loss of generated samples.

Proof: To prove the proposition, it is sufficient to prove
the proposition for the case of a single Gaussian compo-
nent density, which shall be denoted N (x;µ,Σ)≡N (x).
After decomposing the covariance matrix Σ as Σ=AA>,
a set of samples G⊃ g can be obtained (see Sec. 3.2).
This is achieved by transforming a random normal vari-
able z∼N (0, I) as g=Az+µ. The loss on the generated

samples is expressed as

L(g) = lnN (g) = lnN (Az + µ)

∼ f(Σ)− 1

2
(Az)>Σ−1(Az) = f(Σ)− 1

2
‖z‖2

L(G) =
∑
i

L(g) = Nf(Σ)− dN

2
. (1)

If the training samples follow a Gaussian distribution, their
mean and variance coincide with the parametersµ, Σ of the
Gaussian component density. Thus, their loss is identical to
Eq. (1) by the same reasoning. If training samples deviate
from Gaussianity, as may be expected in practice, their loss
will be lower. This is trivial to show by expanding their
distribution around a Gaussian one into an Edgeworth series
(see [37]), and plugging this expansion into Eq. (1). Thus,
we know that the loss that is actually obtained on test data
represents a lower bound for the loss of generated samples.

3.3. Class-Conditional Sampling

This form of sampling has the goal of generating samples
belonging to a given class c. To provide the GMM with this
information, we fix a certain output vector o of the linear
classifier and try to infer what inputs i would produce it:

o = s(Wi+ b)⇒ i ≈W>(s−1(o) + k − b
)
.

Since the softmax function is shift-invariant, the inverse is
defined only up to a constant k which we set to 0. To first
approximation, we assume that the weight matrixW of the
linear classifier has orthogonal columns. Entries of o must
be bounded in the [0, 1] interval, have a unit sum, and ex-
press a confident decision for a given class C. We choose
oC = 0.95 and normalize accordingly to obtain a control
signal i for the GMM. This control signal represents the ex-
pected posterior probabilities of the GMM for a given class
C. It is therefore consistent to use it for unconditional sam-
pling (previous paragraph) instead of the GMM weights π.

3.4. Replay

Prior to training generator and learner at sub-task T ≥ 1,
samples from previous sub-tasks 1≤ t<T must be pro-
duced by the generator. If we let ν(t) denote the number
of data samples for any sub-task t, and ξ(t) the number of
samples to generate for sub-task t, then two strategies may

4



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

CVPR
#****

CVPR
#****

CVPR 2021 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

be discerned for choosing ξ(t). The proportional strategy
which chooses ξ(t) =

∑t−1
t′ ν(t′) and the constant strategy

with ξ(t) =κν(t).

Training Once samples have been generated, generator
and learner are trained concurrently, each with its own loss
function. For the GMM, we use plain stochastic gradi-
ent descent (SGD) to maximize the log-likelihood of the
training data under the model, expressed in the notation of
Sec. 1.2 as:

L(X) = ln p(X) =
∑
i

log
∑
k

πjNj(x),

using the efficient training procedure for high-dimensional
streaming data described in [38]. The linear classifier re-
ceives the GMM responsibilities γ as input and is trained
by minimizing the usual cross-entropy loss

yi = s
(
Wγi(x) + b

)
LCE =

1

N

∑
i

log yijtij

by SGD, with s(·) denoting the softmax function. SGD
learning rates for GMM and linear classifier are denoted by
εG and εC .

Hyper-Parameters The principal hyper-parameters of
GMR are, first of all, the number K of GMM compo-
nents, and the GMM learning rate εGMM. All GMM hyper-
parameters are selected according to [38]. In particular, the
crucial parameterK follows a “the more the better” logic so
it is easy to select. For the linear classifier, the learning rate
εC plays a role as well. Since inputs to the linear classifier
are normalized and bounded in the [0, 1] interval, the opti-
mal learning rate is rather task-independent can be selected
as a function of the GMM parameter K.

4. Elastic Weight Consolidation
The approach from [15] is a typical regularization-based
model for DNNs, see Sec. 1.1. EWC stores DNN param-
eters ~θTt after training on sub-task Tt. In addition, EWC
computes the “importance” of each parameter after training
on sub-task Tt. This is done by approximating the diagonal
~FTt of the Fisher Information Matrix (see [19] for a discus-
sion of this approximation). The EWC loss function con-
tains additional terms, see Eq. (2) besides the cross-entropy
loss computed on the current sub-task Tc. These additional
terms punish deviations from “important” DNN parameter
values obtained after training on past sub-tasks:

LEWC = LTc(θ) +
λ

2

c−1∑
t=1

∑
i

FTt
i

(
θi − θTt

i

)2
(2)

EWC is optimized using the Adam optimizer. EWC hyper-
parameters are the SGD step size εEWC , the regularization

constant λ and of course the number and size of layers in
the DNN. In [15], it is proposed to set λ= 1/εEWC , thus
eliminating one hyper-parameter.

5. Generative Replay
We implement generative replay (GR) as described in [25]
with a GAN-based generator. The precise configurations of
generator and learner is given in App. A. Batch sizes are B
for the first sub-task and 2B for sub-tasks t> 1. Important
hyper-parameters are the SGD step size εG, and the num-
ber of epochs for training. At each sub-task, the generator
produces as many samples as contained in all previous sub-
tasks to maintain balance. Alternatively, a fixed number of
generated samples is possible as well.

6. Experiments
For validating the goals as outlined in Sec. 1, we conduct the
following experiments on sequential learning tasks (SLTs)
constructed as described in Sec. 2. In Sec. 6.2, we demon-
strate unsupervised outlier detection to identify sub-task
boundaries without reference to class labels. A demon-
stration of sampling quality as measured by the GMM-
loglikelihood is given in Sec. 6.3. As a by-product of the
GMR architecture, we present, results on class-conditional
sampling on all three datasets in Sec. 6.4. Sec. 6.5 shows
that GMR achieves state-of-the-art classification perfor-
mance on the SLTs when compared to generative replay and
EWC.

6.1. Hyper-Parameters

GMR In the terms of Sec. 3, we chose K = 100,
εG = 0.01, B= 100, εC = 0.01. For the constant replay
strategy (see Sec. 3.4), a proportionality constant of S= 2
is used. Training epochs are empirically set to 20 for each
task. The other hyper-parameters are set to default values
as defined in [38].

GR In terms of Sec. 5 and Fig. 1, generators are always
trained for 50 epochs (E) and solvers for 25 epochs. The
Adam optimizer is used for effecting gradient descent, using
a step size εG = 0.001 for solver and generators. Samples
are generated such as to maintain balance between previous
and current classes.

EWC For each SLT, we perform a grid search for the
parameter ε. We vary the learn rate for EWC εEWC as
εEWC ∈{0.001, 0.0001, 0.00001, 0.000001, 0.0000001}.
Depending on this λ is always set to 1

εEWC . We fix the
model architecture to a three-layer DNN, each of size
800. Training epochs E are empirically set to 10 for each
training task. The best hyper-parameters and experiments
are selected based on the highest average accuracy (over 10
repetitions) on all classes measured after the last sub-task.

5



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

CVPR
#****

CVPR
#****

CVPR 2021 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

6.2. Task Boundary Detection

We train GMR on the SLT D2-2-2-2-2a, while updating the
sliding average and variance for the log-likelihood as indi-
cated in Sec. 3.1. For each sample x in a mini-batch B, we
test whether they are inliers as discussed in Sec. 3.1, using
a value of c= 1. We then compute the empirical probabil-
ity of inliers in the mini-batch. Each time this probability
drops by more than 20%, we assume a task boundary has
occurred. The results are shown in Fig. 3.

Figure 3. Detection of task boundaries on the first three sub-tasks
of D2-2-2-2-2a. Areas highlighted in red signal automatically de-
tected task boundaries.

6.3. Sampling

In this experiment, we verify that the GMM loss of gen-
erated samples (sampling loss) is always higher than the
GMM training loss. A proof for this was given in Sec. 3.2:
here, we give en empirical validation. This experiment is
independent of continual learning, which is why we use the
baseline SLTD10 for all three datasets. Fig. 4 shows results
for all three datasets, and we observe that the sampling loss
is indeed higher than the asymptotic training loss, often by
quite a margin.

6.4. Class-Conditional Sampling with GMR

For this experiment, we train a GMR instance on SLT D10

for each dataset, i.e., on all classes at once. Subsequently,

Figure 4. Training and sampling loss for SLT D10. The sampling
loss is superimposed on each graph as a black horizontal line. Its
value is given in the box.

we use the each of the three trained models to conditionally
generate 50 samples: 25 from classes C= {1, 2}, and 25
samples from from classes C= {5, 7}. For each generated
sample, the class c is drawn from C with equal probability.
Control signals to the GMM for generating a sample from
class c are obtained and applied according to Sec. 3.3. The
results can be viewed in Fig. 5. We observe that samples are
very reliably selected from the given set C. In some cases,
errors occurs for samples that are visually very similar to
elements of C: this reflects simply the fact that the classifi-
cation accuracy is not perfect. For perfect classification, we
expect no such such sampling inaccuracies.

Additionally, we perform class-conditional sampling in
the same way as just described, but using a deep convolu-
tional GMM (DCGMM) as described in [33]. Model details
are given in App. B. The generated samples for MNIST are
shown in Fig. 6.

6.5. Comparison of GR, GMR and EWC

We train EWC, GMR and GR on all SLTs listed in Sec. 2,
according to the hyper-parameter settings described earlier
in this section, see Sec. 6.1. Classification accuracy is read
off after completing training on the last sub-task. Baseline
accuracy on a non-continual learning task (D10) is recorded
for all datasets and methods. For GR and GMR, we use the

6



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

CVPR
#****

CVPR
#****

CVPR 2021 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 3. Results of the conducted GMR, EWC and GR experiments. The accuracy in % is stated as baseline for all experiments based on
the available classes for each dataset. For each best SLT experiment (defined in Tab. 1) the difference to the baseline is given. Therefore,
the maximum measured accuracy value is used, averaged over 10 experiment repetitions. To measure the accuracy, the joint test dataset
consisting of all tasks (D10) is used.

SLT

model
dataset

GMR EWC GR
MNIST FashionMNIST Devanagari MNIST FashionMNIST Devanagari MNIST FashionMNIST Devanagari

acc.% std acc.% std acc.% std acc.% std acc.% std acc.% std acc.% std acc.% std acc.% std
D10 baseline 87.4 0.59 73.9 0.26 74.1 0.73 97.57 0.26 87.55 0.38 95.58 0.56 99.3 0 99.3 0 99.1 0

diff. std diff. std diff. std diff. std diff. std diff. std diff. std diff. std diff. std
D9-1a -1.3 0.59 -2.7 0.26 -3.2 0.73 -41.8 0.26 -9.6 0.38 -56.6 0.56 -15.1 0.7 -25.6 0.5 -13.5 0.54

D9-1b -3.5 2.19 -1.5 0.87 -1.4 0.88 -50.7 7.77 -20.1 2.52 -29.7 13.34 -21.8 0.9 -16.5 1.1 -10.9 0.41

D5-5a -0.6 1.53 -1.2 1.53 -6.8 1.38 -35.3 6.65 -32.7 4.22 -46.0 15.38 -10.0 1.4 -19.8 3.2 -6.7 0.3

D5-5b -1.3 1.92 -1.9 0.49 -4.7 1.59 -35.0 1.83 -36.0 2.72 -47.1 0.11 -11.9 1.0 -17.7 4.0 -7.6 0.37

D2-2-2-2-2a -9.5 3.83 -8.5 0.91 -22.5 2.71 -72.2 7.43 -55.6 4.05 -72.1 2.75 -41.4 3.8 -25.0 5.9 -40.0 3.3

D2-2-2-2-2b -10.4 5.28 -5.7 2.37 -14.7 2.94 -72.6 3.22 -57.3 4.99 -73.2 2.31 -34.8 4.1 -29.4 7.3 -34.7 7.6

Figure 5. Conditional sampling results for GMR models trained
on MNIST (top), FashionMNIST (middle) and Devanagari (bot-
tom). In each row, 25 samples for classes 1,2 (left) and 25 samples
for classes 5,7 (right) are generated.

Figure 6. Conditional sampling results for GMR models trained
on MNIST using a deep convolutional GMM (DCGMM). To be
read as Fig. 5.

proportional sample generation strategy, see Sec. 3.4. We
present the results as deviations from baseline performance

in Tab. 3. The comparison is not entirely fair since GMR has
a much lower baseline performance. On the contrary, we
observe that the drop in classification accuracy due to CL is
generally much smaller. We take the view that is really this
drop that characterizes continual learning performance.

7. Principal Conclusions and Discussion
7.1. State-Of-The-Art GMR Performance

From the experiments of Sec. 6, we can conclude that GMR
can egalize the performance of GR, and that both GMR
and GR outperform EWC by a large margin. Here, we are
talking about continual learning performance as defined in
Sec. 6.5. GMR performance on the non-continual baseline
D10 is markedly inferior to that of a standard DNN. This
makes it even more remarkable that continual learning per-
formance is similar to GR, which after all included a fully-
fledged CNN classifier.

7.2. Memory Requirements

GMR has a low memory footprint because the genera-
tor (the GMM) is re-used for classification, see Fig. 2.
Since the GMM itself is “flat”, its memory requirements
are modest. For an input dimensionality of d= 1000,
with K = 100 GMM components and 10 classes, the to-
tal memory required to store the complete GMR model is
2Kd+ 10K + 10 = 201 010. The corresponding GR model
consists of a three-layer DNN (the learner) and two CNNs
for the generator and a discriminator. It contains 3 770 204
parameters, which is more than two orders of magnitude
larger than the corresponding GMR model. This is again
remarkable since continual learning performance is quite
comparable.

7.3. Quality of Generated Samples

In contrast to models like, e.g., GANs, GMMs provide
strong guarantees concerning the quality of generated sam-
ples via their loss function, see Sec. 3.2. A direct implica-
tion is that sample generation capacity can be monitored at

7



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

CVPR
#****

CVPR
#****

CVPR 2021 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

training time by monitoring the loss. In particular, if the loss
should decrease significantly during training, this would be
a strong sign for mode collapse. This is virtually excluded
due to SGD that aims to maximize the loss, and such behav-
ior was never observed in all the experiments conducted in
Sec. 6.3.

7.4. Simple Conditional Sampling

As shown in Sec. 6.4, conditional sampling is a reliable way
to obtain samples from certain given classes only. The sim-
plicity of the process is an appealing feature of GMR, re-
alized through the GMMs ability for (unconditional) sam-
pling.

7.5. Respecting Real-World Constraints

GMR is attractive for real-world applications because it
fully respects several important constraints (see [6] for a
more comprehensive discussion of real-world constraints).

No Looking Back GMR does not require access to data
from past sub-tasks to determine when to stop re-training,
see Sec. 1. This property is shared with GR but not with
EWC, whose performance drops after a certain time, see
Sec. 6.5. To determine the optimal point for stopping train-
ing, EWC requires access to data from past sub-tasks, which
is in direct contradiction to the continual learning paradigm,
see Sec. 1.

No Looking Ahead The hyper-parameters for EWC, no-
tably the balancing parameter λ and the DNN parameters,
need to be determined by grid-search, since performance
depends upon these parameters in a complex way. This re-
quires repeating the whole experiment many times with dif-
ferent parameters, and thus determining hyper-parameters
for given sub-task based on sub-tasks that come later. That
violates the CL paradigm, which states that only one sub-
task at a time can be accessed. See [6] for a longer discus-
sion on this point. In contrast, GMR has only one really
free parameter, the number of GMM components K, which
follows a “the more the better”. Therefore, it is possible
to determine a good value for K on sub-task T1 only, and
thus to respect the CL paradigm. A large number of training
epochs does not affect learning adversely, and can thus be
liberally selected on T1, just as the learning rate.

7.6. Model Limitations

As far as continual learning performance is concerned, the
presented GMR method has state-of-the-art performance on
SLTs derived from simple benchmarks such as MNIST or
FashionMNIST. It is however strongly inferior w.r.t. non-
continual (baseline) performance as shown in Sec. 6.5.
Neither can it be expected to perform well on more dif-
ficult SLTs constructed, e.g., from the SVHN benchmark.
Mainly, such a complex benchmark would require an ex-

tremely high number K of GMM components for high-
quality sampling. In addition, the representation provided
by an “flat” GMM may not be expressive enough to allow
accurate classification. A solution to both problems may
well lie in using deep GMM variants such as presented in
[39] or [33].

8. Outlook and Next Steps
Applying GMR to more challenging problems requires
principally to improve the GMM’s sample generation ca-
pacity without excessive resource requirements. We will
investigate two main directions:

Using a Deep Convolutional Generator Just as DNNs
and CNNs can represent more complex functions than
single-layer perceptrons, deep convolutional GMMs can
model more complex distributions. We plan to investigate
the models proposed in [39] or [33] for replacing the current
“flat” GMM.

Different GMR Design Choices A major design choice in
GMR is to restrict GMMs to diagonal covariance matrices,
see Sec. 3. Full covariance matrices are out of the question
due to memory reasons: forK = 100 and data dimensional-
ity d≈ 1000. This would involve 108 parameters for storage
alone, not talking about memory requirements on a GPU
due to parallel processing. A compromise might be the use
of a MFA (mixture of factor analyzers) instead of a GMM
model. This may, at reasonable memory overhead, signif-
icantly enhance the GMM’s sample generation capacity as
demonstrated in, e.g., [40].

References
[1] German I. Parisi, Ronald Kemker, Jose L. Part,

Christopher Kanan, and Stefan Wermter. Contin-
ual lifelong learning with neural networks: A review.
Neural Networks, 113:54–71, may 2019. 1

[2] Tyler L. Hayes, Ronald Kemker, Nathan D. Cahill, and
Christopher Kanan. New Metrics and Experimental
Paradigms for Continual Learning. IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pages 2144–2147, jun 2018. 1

[3] Andrea Soltoggio, Kenneth O. Stanley, and Sebastian
Risi. Born to learn: The inspiration, progress, and fu-
ture of evolved plastic artificial neural networks. Neu-
ral Networks, 108:48–67, 2018. 1

[4] M. Delange, R. Aljundi, M. Masana, S. Parisot, X. Jia,
A. Leonardis, G. Slabaugh, and T. Tuytelaars. A con-
tinual learning survey: Defying forgetting in classifi-
cation tasks. IEEE Transactions on Pattern Analysis
and Machine Intelligence, pages 1–1, 2021. 1

8



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

CVPR
#****

CVPR
#****

CVPR 2021 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[5] Ronald Kemker, Marc McClure, Angelina Abitino,
Tyler L. Hayes, and Christopher Kanan. Measuring
Catastrophic Forgetting in Neural Networks. In Pro-
ceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, pages 3390–3398. AAAI Press,
2018. 1, 2

[6] Benedikt Pfülb and Alexander Gepperth. A com-
prehensive, application-oriented study of catastrophic
forgetting in DNNs. International Conference on
Learning Representations (ICLR), 2019. 1, 8

[7] Chrisantha Fernando, Dylan Banarse, Charles Blun-
dell, Yori Zwols, David Ha, Andrei A. Rusu, Alexan-
der Pritzel, and Daan Wierstra. PathNet: Evolution
Channels Gradient Descent in Super Neural Networks.
CoRR, abs/1701.08734, 2017. 2

[8] A. Mallya and S. Lazebnik. PackNet: Adding Multi-
ple Tasks to a Single Network by Iterative Pruning. In
2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 7765–7773, Los
Alamitos, CA, USA, jun 2018. IEEE Computer Soci-
ety. 2

[9] Arun Mallya, Dillon Davis, and Svetlana Lazebnik.
Piggyback: Adapting a Single Network to Multiple
Tasks by Learning to Mask Weights. In Vittorio Fer-
rari, Cristian Sminchisescu, Yair Weiss, and Martial
Hebert, editors, Computer Vision ECCV 2018 - 15th
European Conference, 2018, Proceedings, Lecture
Notes in Computer Science, pages 72–88. Springer-
Verlag Berlin Heidelberg, 2018. 2

[10] Joan Serra, Didac Suris, Marius Miron, and Alexan-
dros Karatzoglou. Overcoming Catastrophic Forget-
ting with Hard Attention to the Task. In Proceedings of
the 35th International Conference on Machine Learn-
ing, volume 80, pages 4548–4557, Stockholmsmssan,
Stockholm Sweden, 10–15 Jul 2018. PMLR. 2

[11] Andrei A. Rusu, Neil C. Rabinowitz, Guillaume
Desjardins, Hubert Soyer, James Kirkpatrick, Ko-
ray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell.
Progressive Neural Networks. CoRR, abs/1606.04671,
2016. 2

[12] Rahaf Aljundi, Punarjay Chakravarty, and Tinne
Tuytelaars. Expert Gate: Lifelong Learning With a
Network of Experts. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), July
2017. 2

[13] Rahaf Aljundi, Marcus Rohrbach, and Tinne Tuyte-
laars. Selfless Sequential Learning. In International
Conference on Learning Representations, 2019. 2

[14] Zhizhong Li and Derek Hoiem. Learning Without For-
getting. In European Conference on Computer Vision,
pages 614–629. Springer, 2016. 2

[15] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A. Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, Demis Hassabis, Claudia
Clopath, Dharshan Kumaran, and Raia Hadsell. Over-
coming catastrophic forgetting in neural networks.
Proceedings of the National Academy of Sciences,
114(13):3521–3526, 2017. 2, 5

[16] Friedemann Zenke, Ben Poole, and Surya Ganguli.
Continual Learning Through Synaptic Intelligence. In
Doina Precup and Yee Whye Teh, editors, Proceed-
ings of the 34th International Conference on Ma-
chine Learning, volume 70 of Proceedings of Ma-
chine Learning Research, pages 3987–3995, Interna-
tional Convention Centre, Sydney, Australia, 06–11
Aug 2017. PMLR. 2

[17] Jonathan Schwarz, Jelena Luketina, Wojciech M.
Czarnecki, Agnieszka Grabska-Barwinska, Yee Whye
Teh, Razvan Pascanu, and Raia Hadsell. Progress &
compress: A scalable framework for continual learn-
ing. 35th International Conference on Machine Learn-
ing, ICML 2018, 10:7199–7208, 2018. 2

[18] Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-
Woo Ha, and Byoung-Tak Zhang. Overcoming Catas-
trophic Forgetting by Incremental Moment Matching.
In Proceedings of the 31st International Conference
on Neural Information Processing Systems, NIPS’17,
page 46554665, Red Hook, NY, USA, 2017. Curran
Associates Inc. 2

[19] Alexander Gepperth and Florian Wiech. Simplified
computation and interpretation of fisher matrices in
incremental learning with deep neural networks. In
Artificial Neural Networks and Machine Learning –
ICANN 2019: Deep Learning, pages 481–494, Cham,
2019. Springer International Publishing. 2, 5

[20] S. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lam-
pert. iCaRL: Incremental Classifier and Representa-
tion Learning. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 5533–
5542, 2017. 2

[21] David Lopez-Paz and Marc’Aurelio Ranzato. Gradi-
ent Episodic Memory for Continual Learning. In Pro-
ceedings of the 31st International Conference on Neu-
ral Information Processing Systems, NIPS’17, page
64706479, Red Hook, NY, USA, 2017. Curran Asso-
ciates Inc. 2

9



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

CVPR
#****

CVPR
#****

CVPR 2021 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[22] Arslan Chaudhry, MarcAurelio Ranzato, Marcus
Rohrbach, and Mohamed Elhoseiny. Efficient Life-
long Learning with A-GEM. In ICLR, 2019. 2

[23] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and
Yoshua Bengio. Gradient based sample selection for
online continual learning. In Advances in Neural In-
formation Processing Systems 32: Annual Confer-
ence on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 11816–11825, 2019. 2

[24] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elho-
seiny, Thalaiyasingam Ajanthan, Puneet K. Dokania,
Philip H. S. Torr, and Marc’Aurelio Ranzato. On Tiny
Episodic Memories in Continual Learning. 2019. 2

[25] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon
Kim. Continual Learning with Deep Generative Re-
play. In Proceedings of the 31st International Con-
ference on Neural Information Processing Systems,
NIPS’17, page 29943003, Red Hook, NY, USA, 2017.
Curran Associates Inc. 2, 3, 5

[26] Nitin Kamra, Umang Gupta, and Yan Liu. Deep Gen-
erative Dual Memory Network for Continual Learn-
ing. CoRR, abs/1710.10368, 2017. 2

[27] Pietro Buzzega, Matteo Boschini, Angelo Porrello,
Davide Abati, and Simone Calderara. Dark Experi-
ence for General Continual Learning: a Strong, Sim-
ple Baseline. In 33. Annual Conference on Neural In-
formation Processing Systems (NIPS), 2020. 2

[28] Joseph K J and Vineeth N Balasubramanian. Meta-
Consolidation for Continual Learning. In Advances in
Neural Information Processing Systems, volume 33,
pages 14374–14386. Curran Associates, Inc., 2020. 2

[29] Adel Tameem, Nguyen Cuong V., Turner Richard E.,
Ghahramani Zoubin, and Weller Adrian. Interpretable
Continual Learning. pages 1–11, 2019. 2

[30] Sebastian Farquhar and Yarin Gal. Towards Ro-
bust Evaluations of Continual Learning. CoRR,
abs/1805.09733, 2018. 2

[31] Timothe Lesort, Andrei Stoain, Jean-Franois Goudou,
and David Filliat. Training Discriminative Models to
Evaluate Generative Ones. 2

[32] Martin Mundt, Yong Won Hong, Iuliia Pliushch, and
Visvanathan Ramesh. A wholistic view of contin-
ual learning with deep neural networks: Forgotten
lessons and the bridge to active and open world learn-
ing. arXiv, pages 1–32, 2020. 2

[33] Alexander Gepperth and Benedikt Pfülb. Image
Modeling with Deep Convolutional Gaussian Mixture
Models. In International Joint Conference on Neural
Networks, 2021. Submitted. 2, 6, 8, 11

[34] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324,
1998. 4

[35] Han Xiao, Kashif Rasul, and Roland Vollgraf.
Fashion-MNIST: a Novel Image Dataset for Bench-
marking Machine Learning Algorithms. pages 1–6,
2017. 4

[36] Shailesh Acharya, Ashok Kumar Pant, and
Prashnna Kumar Gyawali. Deep learning based
large scale handwritten Devanagari character recogni-
tion. SKIMA 2015 - 9th International Conference on
Software, Knowledge, Information Management and
Applications, 2016. 4

[37] Sergei Blinnikov and Richhild Moessner. Expansions
for nearly Gaussian distributions. Astronomy and As-
trophysics Supplement Series, 130(1):193–205, 1998.
4

[38] Alexander Gepperth and Benedikt Pfülb. Gradient-
Based Training of Gaussian Mixture Models in High-
Dimensional Spaces. arXiv, 2019. 5

[39] Aäron van den Oord and Benjamin Schrauwen. Fac-
toring Variations in Natural Images with Deep Gaus-
sian Mixture Models. In Advances in Neural Infor-
mation Processing Systems 27: Annual Conference
on Neural Information Processing Systems 2014, De-
cember 8-13 2014, Montreal, Quebec, Canada, pages
3518–3526, 2014. 8

[40] Eitan Richardson and Yair Weiss. On GANs and
GMMs. Advances in Neural Information Process-
ing Systems, 2018-December(NeurIPS):5847–5858,
2018. 8

10


