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Abstract. We present a unimodal, comprehensive, and easy-to-use data-
set for visual free-hand gesture recognition. We call it GestureMNIST
because of the 28 × 28 grayscale format of its images, and because the
number of samples is approximately 80,000, similar to MNIST. Each of
the six gesture classes is composed of a sequence of 12 images taken by
a 3D camera. As a peculiarity w.r.t. other datasets, all sequences are
recorded by a single person, ensuring high sample uniformity and qual-
ity. A particular focus is to provide a vision-based dataset that can be
used ”out of the box” for sequence classification without any preprocess-
ing, segmentation, and feature extraction steps. We present classification
experiments on GestureMNIST with different types of DNNs, establish-
ing a performance baseline for sequence classification algorithms. We
place particular emphasis on ahead-of-time classification, i.e., the cor-
rect identification of a gestures class before the gesture is completed. It
is shown that CNN and LSTM-based deep learning achieves near-perfect
performance, whereas ahead-of-time classification performance offers am-
ple scope for future research with GestureMNIST. GestureMNIST con-
tains visual samples only, but other modalities, namely acceleration and
sound data, are available upon request.
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1 Introduction

This work is in the context of free-hand gesture recognition, a field of ma-
chine learning that has profound application relevance in, e.g., human-machine-
interaction (HMI). More generally, we target the wider field of sequence classi-
fication, where data samples consist of several elements that are presented one
after the other. Typical sequence classifiers are given by Hidden Markov models
(HMM) often used in speech classification. Recurrent neural networks (RNNs)
have a long tradition in this domain as well. With the advances in Deep Learning,
deep recurrent neural networks have been proposed, perhaps most prominently
represented by bi-directional LSTM networks [3] which reach state-of-the-art
performance in several application domains.

RNNs offer the intriguing possibility to obtain a decision before a sequence
has been completely presented, which we denote as ahead-of-time classification.
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Especially in free-hand gesture recognition, this ability seems crucial for seamless
and intuitive interaction with humans.

Successful hand gesture recognition requires datasets that are large, diverse,
and reliable. These requirements are partially conflicting since large and diverse
datasets are usually ensured by involving many different persons. Although this
promotes sample diversity, this diversity is, partially at least, an undesirable
one, since each person performing the gestures needs to learn how to perform
them correctly. As a consequence, the recorded data will contain many gestures
that are inconsistent with others or even plain inappropriate. Thus, the sample
quality and quantity of a dataset plays an important role in successfully
training gesture classifiers.

Free-hand gesture recognition is often performed on RGB images, which re-
quires extensive image pre-processing and feature extraction techniques to
be applied. In particular, these steps are necessary if robustness to illumination
and background is a goal.

Lastly, the acquisition of a sufficiently large number of gesture samples
is a tedious and expensive process, which maybe explains why most public ges-
ture recognition datasets are rather small as compared to image classification
benchmarks.

1.1 Related Work

Hand gesture recognition is a long-standing subject of academic and industrial
interest and thus has a long history in machine learning, please see [10, 5, 14]
for surveys. Surprisingly, the number of large-scale public datasets is rather
low. Concretely, the nvGesture dataset [8] contains 1,532 samples grouped in 25
categories (∼ 60 samples per category). The EgoGesture dataset [15] contains
∼ 24, 000 samples in 83 classes (∼ 300 samples/class). Lastly, the ChaLearn
ISO/ConGD 2016 datasets [13] contains ∼ 47, 000 gesture samples grouped into
249 classes, or ∼ 200 samples per class. In most of these datasets, the emphasis
is on realistic settings, so background, clutter, and subject diversity form an
integral part of the problems addressed in these work, namely robustness and
subject invariance. On the other hand, given the low number of gesture sam-
ples per class, it may be asked whether this is actually sufficient for training
DNNs, which require a large number of data samples for training. All of these
datasets (except [15]) require significant pre-processing of images since the full
background is included and no foreground/background segmentation is provided.

1.2 Contribution

We present GestureMNIST, a large, publicly available dataset of high-quality
visual hand gesture samples (see Figure 1 for a visualization of typical sam-
ples). All gestures are recorded from a single person to ensure uniformity and
sample quality. Two of the gesture classes are very similar visually (“one snap”
and “two snaps”), which poses strong challenges on ahead-of-time classification.
We place great emphasis on providing a sufficient amount of gesture samples
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Fig. 1: Samples taken from each GestureMNIST class. From top to bottom:
Thumbs up, Thumbs down, Swipe Left, Swipe Right, One Snap, Two Snaps.

per class (∼13,000) to enable efficient training of DNN models. The hand has
already been segmented and the background has been removed, so the dataset
can be directly used for machine learning, without having to resort to complex
image processing pipelines. We describe experiments with deep CNN and LSTM
sequence classifiers that establish a performance baseline for this new dataset.
As a particular focus of the examination of LSTM classifiers, we investigate
ahead-of-time classification for different time points in the sequence.

2 Dataset

Gesture MNIST is an MNIST-like [7] dataset of six free-hand gestures, consisting
of 79,881 samples. Each sample is a sequence of twelve 28 × 28 grayscale images.
All gestures are performed by a single person to ensure carefully curated data
with little to no errors in how the correct gesture for each class is performed.

The samples for this dataset are recorded in a fixed setting to ensure that
the hand gesture is always performed in a predefined volume of interest. For this
reason, we built a setup: We bolted the camera to a board and marked the area
in which to conduct the gesture. This setup can be seen in Figure 2.

Every recording consists of ten repetitions r of one gesture before continuing
to the next gesture class c. Therefore, each recording produces r · c = 10 · 6 = 60
samples. The samples are simultaneously assigned class labels while saving them
to the disk. For this dataset, we only used the 3D point clouds obtained by an
Orbbec Astra 3D sensor. In fact, we also record three other modalities – RGB
images, audio, and acceleration data. Since this is supposed to be an MNIST-like
dataset for benchmarking uni-modal sequence detection models, those are not
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Fig. 2: The fixed setup to record hand gestures for our gesture dataset.

used here but are available upon request for further research on multi-modal
models.

The Gesture MNIST dataset consists of six classes Ci with i = [1, 6] as
follows: Thumbs Up, Thumbs Down, Swipe Left, Swipe Right, One Snap, Two
Snaps. Both swiping gestures are performed with the whole hand instead of one
or multiple fingers. The snapping gestures focus on the thumb and middle finger
to make one or two snapping sounds, respectively.

To record our data, we use the stream of depth images provided by an Orbbec
Astra 3D sensor. The depth images have a size of 640 × 480 pixels and are
converted to point clouds, then stored. Each gesture lasts for two seconds. During
this time frame, we receive a total of twelve depth images. Therefore, the length
of each sample is twelve frames.

After recording the gestures, we conducted an automated preprocessing step.
At first, we downsample the point cloud. We create a 3D-voxel grid over the input
data. Then, we compute the centroid of all the points in that voxel and use this
to represent the voxel. Thus, we reduce the size to lower computational costs.
In the next step, we crop the point cloud to a predefined volume of interest
to remove unnecessary data. That is the reason why performing the gesture in
a predefined area during recording is so important. By performing a Principal
Component Analysis [12], we determine which points belong to the hand and
remove all others. After these steps, we only keep the downsampled points that
describe the hand performing the gesture.

Afterward, we project these points onto a 2D plane and remove all color
information. Thus, we receive a grayscale image of just the hand. This image is
further processed: We resize the image to 28× 28 pixels and invert the colors to
correspond to the MNIST data format and style. A randomly picked sequence
for each gesture class is shown in Figure 1.

In total, the Gesture MNIST dataset contains approximately 13,300 record-
ings of each gesture class, totaling almost 80,000 samples. Table 1 shows the
exact distribution of each class. All gestures are performed by a single person to
ensure a consistently high quality of the data. Since this person is well-instructed
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and experienced, mistakes or incorrect gestures are very unlikely to happen. That
is not necessarily a sign of invariability since all background and size data are
removed during preprocessing and there are strict guidelines on how to perform
a gesture to ensure consistency. Experiments with a live demonstrator [11] show
that an LSTM model trained on our dataset is able to correctly classify most
gestures performed by users that are not the one who recorded the dataset.

Table 1: Distribution of the six gesture classes in the Gesture MNIST dataset.

Class C1 C2 C3 C4 C5 C6 Total

Samples 13,440 13,410 13,228 13,233 13,308 13,262 79,881

The dataset will be publicly available to be used for research at the following
website: http://data.informatik.hs-fulda.de/. We provide the data in de-
pendence on the format given by the well-known MNIST dataset. The data are
available in a Numpy-Array of shape (N, 12, 28, 28), where N = 79, 881 is the
total number of samples, 12 is the number of frames per sequence, and 28×28 is
the size of each frame. The labels are also available in a Numpy-Array of shape
(N, 6) in one-hot-encoded format.

3 Experiments

We conduct benchmark experiments with state-of-the art classification networks
for sequence detection: a deep Long Short-Term Memory (LSTM) network [4]
and a deep Convolutional Neural Network (CNN) [6].

3.1 LSTM Network

By using preliminary experiments to establish network parameters that lead
to the highest classification accuracy, we choose a deep LSTM network with 5
hidden layers, 800 cells per layer, a learning rate of 0.001, a batch size of 1,000,
and we run 1,000 iterations. We train the network on 80% randomly picked
samples and test the performance on the remaining 20%.

After training the network, we get the predictions on the test data for each
frame of the sequence to receive the gesture classification accuracy for the whole
gesture along with the gesture classification accuracy for ahead-of-time classifi-
cation.

Figure 3 shows the gesture classification accuracy at each frame in a graph.
It can be seen that after five frames the accuracy is already over 50%. After
two-thirds of the gesture has been processed, the correct class can be predicted
with an accuracy of over 80%. And, after nine of twelve frames, we achieve a
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Fig. 3: Gesture classification accuracies on our test data [in %] for the ahead-of-
time classification at each of the twelve frames.

classification accuracy of almost 90%. After processing the whole gesture, we can
predict the correct gesture class with an accuracy of 99,04%.

Table 2 shows the confusion matrix after half the gesture has been processed
(frame 6 of 12). Here, we achieve classification accuracies of 84%, 86%, 79%, 66%,
10% and 63% for the six classes. Therefore, it is visible that the classification
of class 5 (Snap Once) seems to be most difficult and requires more frames for
reliable classification.

Table 2: Confusion matrix for the ahead-of-time classification at frame 6 of 12.

Predicted class [1-6]

T
a
rg

e
t

[1
-6

] 1,987 0 0 27 726 0
4 2,032 0 618 18 5
7 0 1,796 370 356 91
4 0 103 1,805 738 38
0 1 1 0 259 2,325
0 0 1 1 330 2,333

Table 3 shows the confusion matrix after eight of twelve frames have been
processed. Now, the first four classes achieve classification accuracies of over 90%,
while classes five and six only achieve accuracies of 34% and 65% respectively.
This is not surprising, since those two classes are specifically designed to be very
difficult to distinguish. Adding additional modalities like acceleration data or
sound can help improve the classification.

Finally, Table 4 shows the confusion matrix after all twelve frames have
been processed. After being able to see the whole gesture, the LSTM model
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Table 3: Confusion matrix for the ahead-of-time classification at frame 8 of 12.

Predicted class [1-6]

T
a
rg

e
t

[1
-6

] 2,586 0 0 8 146 0
1 2,579 0 96 0 1
4 0 2,478 82 52 4
0 0 79 2,365 213 31
0 1 0 0 716 1,869
0 0 0 1 468 2,196

achieves an average classification accuracy over all gesture classes of 99.04%.
Still, the accuracy for the first four classes is marginally higher than the gesture
classification accuracy achieved on the two snapping gestures. Overall, it can
be said that an LSTM model can achieve near-perfect results on the Gesture
MNIST dataset when classifying the whole gesture. Ahead-of-time classification
still requires further research to improve results.

Table 4: Confusion matrix for the gesture classification after all twelve frames of
the gesture have been processed.

Predicted class [1-6]

T
a
rg

e
t

[1
-6

] 2,739 0 0 1 0 0
0 2,673 0 4 0 0
0 0 2,603 16 0 1
0 0 6 2,682 0 0
0 1 0 0 2,538 47
0 1 0 1 75 2,589

3.2 CNN

Since a Convolutional Neural Network is not specifically designed to classify
sequential data we concatenate the twelve frames of each Gesture MNIST sample
to create one big image of size 28× 28 · 12 = 28× 336 pixels comparable to the
ones shown in Figure 1. We choose a standard Deep CNN architecture consisting
of the following 17 layers: 3 Conv2D layers, 4 ReLU layers, 3 Max Pooling layers,
4 Dropout layers, 1 Flatten layer, and 2 Dense layers. Further information about
each layer and how the model is designed is shown in Figure 4.

We train the model with a batch size of 64 for a total of 10 epochs. 80%
randomly picked samples from the Gesture MNIST dataset are used for training
while the remaining 20% are used to validate the model and evaluate the perfor-
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Fig. 4: Description of the 17 layers of the CNN model used for our experiments
including layer type, output shape and number of parameters.

mance. Since all frames are fed into the network as one big image, ahead-of-time
classification is not possible in this case.

After training the deep Convolutional Neural Network model, we achieve
a gesture classification accuracy of 99.61% on the test set. The training and
test accuracies during the ten epochs are shown in Figure 5. It can be seen
that the test accuracy is already very high after just one epoch of training and
then hardly improves. Therefore, it can be said that a CNN model adapts to
the GestureMNIST dataset really fast which can reduce computational costs for
training the network.

Tables 5 and 6 show the confusion matrix, and the classification report for the
test data after the training process is finished. A nearly perfect gesture classifi-
cation accuracy can be achieved which is not surprising since deep convolutional
neural networks are specifically designed to classify images. It can also be seen
that the most difficulties – albeit they are not really significant either – happen
with gestures from the last two gesture classes: Snapping once or twice. This, as
explained above already, is due to the fact of their nature to be designed to add
some challenge when only classifying visual modalities.
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Fig. 5: Gesture classification accuracy for each of the ten epochs during training,
comparing the accuracy on the training data and the testing data.

Table 5: Confusion matrix for the gesture classification on our test set using a
deep CNN model trained on GestureMNIST.

Predicted class [1-6]

T
a
rg

e
t

[1
-6

] 2,710 0 0 0 0 1
0 2,617 0 0 0 0
0 0 2,627 12 0 0
0 0 3 2,687 0 0
0 0 0 4 2,636 14
0 0 0 0 30 2,635

4 Outlier Detection

Outlier detection arguably constitutes another important functionality in the
context of gesture recognition, since relevant gestures are often embedded into
a continuous stream of non-gestures, or else there may be irrelevant frames be-
fore and after a meaningful gesture that need to be ignored. In addition, there
should be an additional safeguard against spurious gestures or adversarial at-
tacks, where unknown or absurd gestures may be used to confident classification
results. Outlier detection usually relies on unsupervised methods such as Gaus-
sian Mixture Models (GMMs) or k-means (which is really an approximation to
GMMs). Here, we report results for GMMs that are fed entire sequences in con-
catenated form. Based on a thresholding operation performed on the returned
score, a gesture is classified as an inlier or an outlier. Notably, GMM training is
performed on inliers only.
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Table 6: Classification report for the gesture classification on our test set using
a deep CNN model trained on GestureMNIST.

Class Precision Recall Accuracy Support

1 1.00 1.00 1.00 2,711

2 1.00 1.00 1.00 2,617

3 1.00 1.00 1.00 2,639

4 0.99 1.00 1.00 2,690

5 0.99 0.99 0.99 2,654

6 0.99 0.99 0.99 2,665

4.1 Gaussian Mixture Models (GMMs)

GMMs [1] are unsupervised generative models that directly model the data dis-
tribution, which is represented as a weighted mixture of K multi-variate Gaus-
sian densities N (~x;Σk, ~µk) ≡ Nk(~x), each of which is parameterized by a cen-
troid ~µk and a covariance matrix Σk. GMM training aims at maximizing the
log-likelihood L of the data under the model, with:

L =
∑
n

log
∑
k

πkNk(~xn). (1)

The vector ~π represents the mixture weights, which are adapted together with
the set of all centroids {~µk} and covariance matrices {Σk}.

Once a GMM has been trained on data, the log-likelihood computed from
a single inlier or outlier sample is taken to be a measure of the GMMs fa-
miliarity with that sample. Consequently, the sample is classified as an inlier
if L(~x) ≥ θGMM. For each value of this threshold, we can now compute the
percentage pI of inliers (in a test set) that would be accepted as inliers, and
a corresponding percentage pO of outliers that are rejected. By plotting pairs
of pI(θGMM), pO(θGMM) into a 2D plot while varying the threshold θGMM, we
obtain receiver-operator-characteristics (ROCs) as shown in Fig. 6a and Fig. 6b.

4.2 Results

We train a GMM with K = 100 mixture components on all classes but one and
then perform outlier detection using the remaining class, which, by definition,
contains outliers only. The GMM is trained for 10 epochs by SGD using the pro-
cedure and the default parameters given in [2]. Table 7 shows the results for these
experiments. As can be seen, the best results were achieved performing outlier
detection on class 4 (Swipe Right) with an AUC of 0.802. The corresponding
ROC can be seen in Figure 6a. The lowest results were achieved performing out-
lier detection on class 5 (One Snap) with an AUC of 0.480. The corresponding
ROC curve can be viewed in Fig. 6b.
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Table 7: Outlier detection results for each class on a GMM trained on the other
five classes.

T1 T2 AUC

{2, 3, 4, 5, 6} 1 0.613

{1, 3, 4, 5, 6} 2 0.758

{1, 2, 4, 5, 6} 3 0.772

{1, 2, 3, 5, 6} 4 0.802

{1, 2, 3, 4, 6} 5 0.480

{1, 2, 3, 4, 5} 6 0.592

(a) ROC curve for outlier detection with
T1 = {1, 2, 3, 5, 6} and T2 = 4. The AUC
is 0.802.

(b) ROC curve for outlier detection with
T1 = {1, 2, 3, 4, 6} and T2 = 5. The AUC
is 0.480.

5 Discussion and conclusion

Summarizing the presented experiments, we observe that Gesture MNIST can be
used “out of the box” for machine learning, without requiring any pre-processing
or feature extraction steps. Sequence classification performance of LSTM and
CNN-based sequence classifiers is high, indicating that Gesture MNIST is a
rather easy classification problem. This does not impair its value as a benchmark,
since ahead-of-time classification remains unsatisfactory, and other applications
such as outlier detection, video modeling, or continual learning (see, e.g., [9])
can be performed relying on Gesture MNIST. We emphasize again the value of
a visual sequence classification dataset that contains a large number of high-
quality samples per class, and in which variability is mainly contributed by the
intrinsic differences between the classes, in contrast to background variability,
inconsistently performed gestures, and differences in gesture onset.
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2. Gepperth, A., Pfülb, B.: Image modeling with deep convolutional gaussian mixture
models. In: International Joint Conference on Neural Networks(IJCNN) (2021)

3. Graves, A., Jaitly, N., Mohamed, A.r.: Hybrid speech recognition with deep bidi-
rectional lstm. In: 2013 IEEE workshop on automatic speech recognition and un-
derstanding. pp. 273–278. IEEE (2013)

4. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9,
1735–80 (12 1997). https://doi.org/10.1162/neco.1997.9.8.1735

5. Khan, R.Z., Ibraheem, N.A.: Hand gesture recognition: a literature review. Inter-
national journal of artificial Intelligence & Applications 3(4), 161 (2012)

6. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger,
K.Q. (eds.) Advances in Neural Information Processing Systems. vol. 25. Curran
Associates, Inc. (2012)

7. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied
to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998).
https://doi.org/10.1109/5.726791

8. Molchanov, P., Yang, X., Gupta, S., Kim, K., Tyree, S., Kautz, J.: Online detection
and classification of dynamic hand gestures with recurrent 3d convolutional neural
network. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 4207–4215 (2016)
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